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   Abstract: Inclined pad thrust bearings are designed for high axial loads at high speeds and to reduce costs. In this 

paper, formulation of Reynolds equation governing the pressure distribution for the bearing is done in two dimensions 

and reduced into a conservative form. A finite difference scheme in conservative form is developed and used to convert 

the terms of the Reynolds equation into a set of simultaneous linear algebraic equations. A solution procedure for finding 

the value of the pressure in the oil film is described. R software programming language is used to fit a parametric 

function on the pressure values that on integration gives the axial load. The thrust bearing behaviour in a realistic 

configuration allowing sufficient parameter variation to check validity of the numerical model is developed supporting 

the validity and accuracy of the method. The results obtained here is a useful input for rotor dynamics especially in 

designing fluid dynamic bearings. 

  Index Terms—Axial load, Reynolds equation, pressure, thrust bearing. 

I. INTRODUCTION 

Hydrodynamic Thrust bearings are used widely for high load carrying capacity at high speeds with reduced 

costs. Reynolds equation is solved to determine the bearing performance. To solve this equation, one requires 

knowledge about lubricant properties such as viscosity and density. In this model viscosity is treated as a 

function of pressure. A number of models of hydrodynamic thrust bearing performance have been proposed 

over the years. Kim et al [1] studied a three dimensional Thermo hydrodynamic bearing model taking into 

account radial tilt neglecting the elastic and thermal distortion of the bearing surfaces. In their study viscosity 

and density were treated as functions of the temperature of the pad and assumed the oil inlet temperature to be 

uniform. Rodkiewiez and Yang [2] studied an infinitely long centrally pivoted thrust bearing with both pressure 

and temperature dependent viscosity and density along with elastic and thermal deformation of bearing 

components by introducing a comprehensive term in the heat equation was included. Brockett et al [3] proposed 

a model for a fixed geometry of a fixed geometry thrust bearing that included temperatures and deformations in 

both runner and pad where viscosity as a function of both temperature and pressure. Almqvist et al [4] studied 

the Thermo hydrodynamic Lubrication analysis of tilting pad step bearing where a comparison was made 

between theory and experiments where viscosity and density are treated as functions of both temperature and 

pressure. Youngson [5] developed a mixed lubrication model to investigate the lubrication of coupled journal-

thrust beaming systems. A conformal mapping method was implemented in the model formulation to facilitate a 

universal flow description of the governing equations into a computational domain. Neminath and 

Gudadappagouda [6] studied the dynamic Reynolds equation for micro polar fluid lubrication of porous slider 

bearing. In the study the rheological effects of micro polar fluid lubricants on the steady state and dynamic 

behavior of porous slider bearings by considering the squeezing action was made. Srikanth et al. [7] modeled a 

large Tilting pad Thrust bearing stiffness and damping coefficients where a formulation of Reynolds’ equation 

for the bearing is done in two dimensions. A finite difference method is used to convert the terms of the 

Reynolds’ equation in to a set of simultaneous linear algebraic equations. Recently, Gultekin [8] studied the 

effects of the total bearing deformation on the performance of hydrodynamic thrust bearings. In the study, the 

pressure distribution in the thrust bearing was obtained using the Reynolds equation for the case of stable 

lubricant viscosity and isothermal conditions. Then, the deformation is found out by applying the constitutive 

equations for the linear elastic materials to both pad and runner. Although many investigations have been made 

in the past two decades, only a few published papers take into account the true geometry of the pad and the 

incline. The pad geometry is represented as a polar rectangle in the xy plane and mapped onto an ordinary 

rectangle in the ,r  plane with the pad inclination taken as a function of the radial component . The 

conservative scheme developed here addresses the issue of the pad geometry. 
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II. MATHEMATICAL FORMULATION 

The two dimensional Reynolds equation in cylindrical form is given by Srikanth [7] 

as;
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On making usual assumptions in the analysis done herein, the Reynolds equation in non - dimensional form is: 

 











































 H
r

H

L
St

PH

r

PrH

r
r 2

2

0

0

33

6       (2) 

To obtain the solution to the non - dimensional equation (2), over one pad to obtain the pressure profiles, the pad 

geometry which represents a polar rectangle in the yx, plane is transformed to  

an ordinary rectangle in the ,r plane using the transformation equations cosrx  and 

sinry  whose Jacobian of transformation is; 
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The transformed plane of reference is as shown in Figure 1 below. 

 

Fig 1: Transformed coordinate system. 

On obtaining a uniform grid, we adopt the numerical procedure as proposed by Morinishi [9] by 
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Using (4) in (2) and doing the necessary expansions yields; 



 
 
 
 
 

ISSN: 2319-5967 

ISO 9001:2008 Certified 
International Journal of Engineering Science and Innovative Technology (IJESIT) 

Volume 3, Issue 1, January 2014 

448 
 

 































r

r

rr

r

rr

rr

hP
H

P

h

HHP

hh 





111 3

2

223

   











 



 
































 Hr

h

MP

h

HP

h

HHP

hh

2

1

3

2

233 111
    (5) 

This is simplified to; 
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III. COMPUTATIONAL PROCEDURE 

The approximation the derivatives in the governing equations is based on the interconnection of five points in a 

five – point stencil discretization difference method where the grid point  ji, and its four neighbors are used. 

The five points are displayed in the figure below. A total of 441 nodes in the form of the grid shown in Figure 2 

below are used.  

 

Fig 2: Discretization of Pad for Reynolds equation [7]. 

Equation (6) is now solved to obtain the pressure distribution over one pad. Letting 
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where r  and  are the grid spacing at a defined point ),( r  in the physical domain. We apply the 

approximations for the first and second order partial derivatives in the equation as proposed by Morinishi [9] to 

have; 
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Making jip , the subject yields; 
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Here the bearing is assumed to work in the full film lubrication condition regime, where the boundary 

conditions are zero pressure at the periphery of the pad and a constant pressure of 2000 is maintained at the 

leading and trailing edges. The fluid film thickness is expressed as a function of ; and is given as; 
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Where the internal and external radii being chosen as 0.5 and 1.5 respectively. 

Viscosity Model 

The viscosity model used for this model is pressure dependent. That is we adopted the Barus expression. 

0,0   Pe . 

Axial Load 

Integrating the pressure over the bearing surface gives the load. 441 values of pressure are generated. These 

values of pressure are dependent on the radius r  and angle . R software programming language, a software 

environment for statistical computing and graphics is used to fit a parametric function for ),( rP  and hence 

integration to obtain the load is done. Mathematically the load is expressed as;  
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IV. RESULTS AND DISCUSSION 

A glimpse on the outlook of the numerical solutions of pressure and axial load is provided below. 

In figure 3 (a) five pads are used, in figure 3 (b) ten pads are used while in figure 3 (c) fifteen pads are used. The 

Stribeck number is maintained at 18. This is to ensure a hydrodynamic lubrication is maintained. The pressure 

distributions for different number of pads have discrepancies in that the as we the number of pads used is 

increased, a higher maximum pressure is attained. This because the increase in the number of pads results to a 

decrease in fluid film thickness and hence the pressure within the fluid mass increases. There is a good 

agreement in the pressure build up from the leading edge up to around 75 percent of the pad, followed by a drop 

pressure towards the trailing edge. This is because as the fluid enters the pad from the leading edge from the 

grooves, there is a decrease in the velocity that causes a decrease in minimum film thickness hence pressure 
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increases. The sharp drop in pressure is due to the increase in velocity as the fluid escapes from the pads back to 

the grooves resulting to an increase in film thickness thus decrease in pressure. 

In figure (4) curves are shown for simulation results for pressure profiles various number of pads for r=1, the 

central radius within the pad. The variations of the pressure profiles are due to changes in inertia at the edges of 

the grooves resulting in reduced pressure at the leading edge of the groove and a rise in pressure at the trailing 

edge. This is as a result of the recirculation flow in the groove accelerating the oil entering the groove. 

Figure (5) shows the pressure distribution against the external load carried by the bearing. Accruing from the 

results, distribution matches with the load carrying capacity of the bearing. This is because the load carrying 

capacity of a bearing is determined by the magnitude of the pressure distribution that is as a result of the relative 

movement between the two surfaces of the bearing which generates a lubricant velocity field. 

 

Fig 3: A comparison of simulation results for the pressure profiles for various numbers of pads. In (a) five pads are 

used, in (b) ten pads are used while in (c) fifteen pads are used. The Stribeck number is maintained at 18. 
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Fig 4: A comparison of simulation results for pressure profiles various number of pads for r=1.} 

 

Fig 5: External Load - Maximum Pressure 

IV. CONCLUSION 

A two dimensional Reynolds equation is modified into conservative form and a finite difference method based 

solution procedure for computing pressure values is verified. Parametric regression is thus used to determine 

pressure as a function of the radius r and the circumferential distance  and on integration of these pressure 

points gives the load. There is good agreement between the results of this model and the results published earlier 

by different authors. This proves the fidelity of our model and that of the software package that was used 
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determine the load. The authors however recommend an improvement of the model to include a temperature 

dependent viscosity. 
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NOMENCLATURE 

r : Radial coordinate, m  

r : Division of grid along radial direction, m 

 : Viscosity of oil, Pa.s 

 : Angle from the leading edge to the trailing edge, rad  

 : Angular division of the grid, rad  

tW : Bearing load, N  

P: Pressure, Pa 

H: oil film thickness, m 

10 , HH : Oil film thickness in the leading and trailing edges, m
 

1H : Oil film thickness in the trailing edge, m 

ji, : Index of node in radial and circumferential directions 

 : Circumferential length of the pad, rad  

tS : Stribeck number  
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