

International Journal of Engineering Science and Innovative Technology (IJESIT)
Volume 5, Issue 6, November 2016

GENERATED SETS OF THE COMPLETE SEMIGROUP BINARI RELATIONS DEFINED BY SEMILATTICES OF THE

CLASS $\Sigma_{1}(X,3)$

Yasha Diasamidze ¹ Omar Givradze ²Alexander Bakuridze³ Faculty of Physics, Mathematics and Computer Sciences, Department of Mathematics, Shota Rustaveli Batumi State University, 35 Ninoshvili St., Batumi 6010,Georgia

Abstract: In this article, we study generated sets of the complete semigroups defined by X – semilattices unions of the class $\Sigma_1(X,3)$.

Key words: Semigroup, semi lattice, binary relation.

I. INTRODUCTION

1.1. Let X be an arbitrary nonempty set, D is an X-semi lattice of unions which closed with respect to the set-theoretic union of elements from D, f be an arbitrary mapping of the set X in the set D. To each mapping f we put into correspondence a binary relation α_f on the set X that satisfies the condition

$$\alpha_f = \bigcup_{x \in Y} (\{x\} \times f(x)).$$

The set of all such α_f ($f: X \to D$) is denoted by $B_X(D)$. It is easy to prove that $B_X(D)$ is a semi group with respect to the operation of multiplication of binary relations, which is called a complete semi group of binary relations defined by an X-semi lattice of unions D.

We denote by \varnothing an empty binary relation or an empty subset of the set X. The condition $(x,y) \in \alpha$ will be written in the form $x\alpha y$. Further, let $x,y \in X$, $Y \subseteq X$, $\alpha \in B_X(D)$, $\breve{D} = \bigcup_{Y \in D} Y$ and $T \in D$. We denote by the

symbols $y\alpha$, $Y\alpha$, $V(D,\alpha)$, X^* and $V(X^*,\alpha)$ the following sets:

$$\begin{split} &y\alpha = \left\{x \in X \mid y\alpha x\right\}, \ Y\alpha = \bigcup_{y \in Y} y\alpha, \ V\left(D,\alpha\right) = \left\{Y\alpha \mid Y \in D\right\}, \\ &X^* = \left\{Y \mid \varnothing \neq Y \subseteq X\right\}, \ V\left(X^*,\alpha\right) = \left\{Y\alpha \mid \varnothing \neq Y \subseteq X\right\}, \\ &D_T = \left\{Z \in D \mid T \subseteq Z\right\}. \ Y_T^\alpha = \left\{y \in X \mid y\alpha = T\right\} \end{split}$$

It is well know the following statement:

Theorem 1.1. Let $D = \{ \check{D}, Z_1, Z_2, ..., Z_{m-1} \}$ be some finite X-semi lattice of unions and $C(D) = \{ P_0, P_1, P_2, ..., P_{m-1} \}$ be the family of sets of pair wise nonintersecting subsets of the set X (the set \emptyset can be repeat several time). If φ is a mapping of the semi lattice D on the family of sets C(D) which satisfies the condition

$$\varphi = \begin{pmatrix} \breve{D} & Z_1 & Z_2 & \dots & Z_{m-1} \\ P_0 & P_1 & P_2 & \dots & P_{m-1} \end{pmatrix}$$

and $\hat{D}_z = D \setminus D_z$, then the following equalities are valid:

In the sequel these equalities will be called formal.

International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 5, Issue 6, November 2016

It is proved that if the elements of the semi lattice D are represented in the form (1.1), then among the parameters P_i $(0 < i \le m-1)$ there exist such parameters that cannot be empty sets for D. Such sets P_i are called basis sources, whereas sets P_j $(0 \le j \le m-1)$ which can be empty sets too are called completeness sources.

It is proved that under the mapping φ the number of covering elements of the pre-image of a basis source is always equal to one, while under the mapping φ the number of covering elements of the pre-image of a completeness source either does not exist or is always greater than one (see [1], chapter 11).

Let $P_0, P_1, P_2, ..., P_{m-1}$ be parameters in the formal equalities and β be any binary relation of the semi group $B_X(D)$ and

$$\overline{\beta} = \bigcup_{i=0}^{m-1} \left(P_i \times \bigcup_{t \in P_i} t \beta \right) \cup \bigcup_{t' \in X \setminus \overline{D}} \left(\left\{ t' \right\} \times \overline{\beta}_2 \left(t' \right) \right), \qquad \dots (1.2)$$

where $\overline{\beta}_2$ is any mapping of the set $X \setminus \overline{D}$ in the set D. Then the representation of the binary relation β of the form $\overline{\beta}$ will be called subquasinormal.

If $\bar{\beta}$ are the subquasinormal representations of the binary relation β , then for the binary relations $\bar{\beta}$ the following statements are true:

a) $\overline{\beta} \in B_{x}(D)$;

b)
$$\bigcup_{i=0}^{m-1} \left(P_i \times \bigcup_{t \in P_i} t \beta \right) \subseteq \beta$$
 and $\beta \subseteq \overline{\beta}$ for some mapping $\overline{\beta}_2$ of the set $X \setminus \overline{D}$ in the set D .

c) the subquasinormal representation of the binary relation $\, eta \,$ is quasinormal;

d) if
$$\overline{\beta}_1 = \begin{pmatrix} P_0 & P_1 & \dots & P_{m-1} \\ P_0 \overline{\beta} & P_1 \overline{\beta} & \dots & P_{m-1} \overline{\beta} \end{pmatrix}$$
, then $\overline{\beta}_1$ is a mapping of the family of sets $C(D)$ in the set $D \cup \{\emptyset\}$.

Remark, that if P_j $(0 \le j \le m-1)$ is such completeness sources, that $P_j = \emptyset$, then the equality $P_j \overline{\beta} = \emptyset$ always is hold. There also exists such a basic sources P_i $(0 \le i \le m-1)$ for which $\bigcup_{i \in P_i} t\beta = \emptyset$, i.e. $P_i \overline{\beta} = \emptyset$.

Definition 1.1. In the sequel, the elements $\bar{\beta}_1$ and $\bar{\beta}_2$ will be called normal and complement mappings for the binary relation $\bar{\beta} \in B_X(D)$.

Theorem 1.2. Let X is finite a set and $\alpha, \beta \in B_X(D)$, then for any subquasinormal representation $\overline{\beta}$ of a binary relation β the equality $\alpha \circ \beta = \alpha \circ \overline{\beta}$ is hold (see [2], Proposition 2).

Proof. Let $x(\alpha \circ \beta)y$ for some $x \in X$ and $y \in \overline{D}$. Then $x\alpha z\beta y$ for some $z \in \overline{D}$ since $x\alpha z$. So, we have $z\overline{\beta}y$ by definition subquasinormal representation $\overline{\beta}$ of a binary relation β and $z, y \in \overline{D}$. Thus the condition $x\alpha z\overline{\beta}y$ is hold, i.e. $\alpha \circ \beta \subseteq \alpha \circ \overline{\beta}$.

In the other hand, if $x'\alpha z'\overline{\beta}y'$ for some $x',z',y'\in X$, then $z',y'\in \overline{D}$ since $\alpha,\overline{\beta}\in B_X\left(D\right)$. From the condition $z'\in \overline{D}$ and the formal equalities follows that $z'\in P_k$ for some $0\leq k\leq m-1$, i.e.

$$z'\!\!\left(\bigcup_{i=0}^{m-1}\!\!\left(P_i\!\times\!\bigcup_{t\in P_i}\!t\beta\right)\right)\!\!y'\,. \text{ Of the last condition and from the condition }\bigcup_{i=0}^{m-1}\!\!\left(P_i\!\times\!\bigcup_{t\in P_i}\!t\beta\right)\!\!\subseteq\!\beta \text{ we obtain that the }$$

conditions $z'\beta y'$ and $x'\alpha z'\beta y'$ are hold. So, we have that $\alpha\circ\bar{\beta}\subseteq\alpha\circ\beta$

Therefore the equality $\alpha \circ \beta = \alpha \circ \overline{\beta}$ is true.

Theorem 1.2 is proved.

ISSN: 2319-5967

ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT)

Volume 5, Issue 6, November 2016

Theorem 1.3. Let \tilde{B} be any generating set of the semi group $B_X(D)$. If for some α and δ of the set \tilde{B} and subquasinormal representation $\bar{\beta} \in B_X(D)$ of a binary relation $\beta \in \tilde{B}$ the inequality $\alpha \neq \delta \circ \bar{\beta}$ is hold, then the condition $\alpha \neq \delta \circ \beta$ is also true.

Proof. If $\alpha = \delta \circ \beta$ for some $\alpha, \delta, \beta \in \tilde{B}$, then from the theorem 1.2 follows, that $\alpha = \delta \circ \beta = \delta \circ \bar{\beta}_1$ for some $\bar{\beta}_1 \in B_X(D)$ and $\bar{\beta}$ is some subquasinormal representation of a binary relation β . But equality $\alpha = \delta \circ \bar{\beta}_1$ contradict the condition $\alpha \neq \delta \circ \bar{\beta}$ for any subquasinormal representations $\bar{\beta} \in B_X(D)$ of a binary relation β . Thus, we have that the representation of a binary relation α of the form $\alpha \neq \delta \circ \beta$ is true. Theorem 1.3 is proved.

Example 1.1. Let
$$X = \{1, 2, 3, 4, 5\}$$
, $D = \{\emptyset, \{2\}, \{1, 2\}\}$, then $P_0 = \emptyset$, $P_1 = \{1\}$, $P_2 = \{2\}$. If $\beta = \{(2, 1), (2, 2), (3, 1), (4, 1), (4, 2), (5, 1)\}$, then $\beta \in B_X(D)$, $\overline{\beta}_1 = \begin{pmatrix} \emptyset & P_1 & P_2 \\ \emptyset & \emptyset & \{1, 2\} \end{pmatrix}$, $\overline{\beta}_2 = \begin{pmatrix} 3 & 4 & 5 \\ \{1\} & \{1, 2\} & \{1\} \end{pmatrix}$ and subquasinormal representation of a binary relation $\overline{\beta}$ has a form $\overline{\beta} = (P_0 \times \emptyset) \cup (P_1 \times \emptyset) \cup (P_2 \times \{1, 2\}) \cup (\{3\} \times \{1\}) \cup (\{4\} \times \{1, 2\}) \cup (\{5\} \times \{1\})$

where P_1, P_2 are basic sources and P_0 is completeness sources.

Definition 1.2. We say that an element α of the semi group $B_X(D)$ is external if $\alpha \neq \delta \circ \beta$ for all $\delta, \beta \in B_X(D) \setminus \{\alpha\}$ (see [1], Definition 1.15.1).

It is well know, that if B is all external elements of the semi group $B_X(D)$ and B' be any generated set for the $B_X(D)$, then $B \subseteq B'$ (see [1], Lemma 1.15.1).

2.1. Let $\Sigma_1(X,3)$ be a class of all X – semilattices of unions whose every element is isomorphic to an X – semi-lattice of unions $D = \{Z_2, Z_1, \breve{D}\}$, which satisfies the condition $Z_2 \subset Z_1 \subset \breve{D}$ (see Figure 2.1):

Let $C(D) = \{P_0, P_1, P_2\}$ is a family sets, where P_0, P_1, P_2 are pairwise disjoint subsets of the set

X and $\varphi = \begin{pmatrix} D & Z_1 & Z_2 \\ P_0 & P_1 & P_2 \end{pmatrix}$ is a mapping of the semilattice D onto the family sets C(D). Then for Z_1 the formal equalities of the semilattice D we have a form:

 $\bullet Z_2$ the formal equalities of the seminature D we have a $D = P_1 \cup P_2 \cup P_3$

Here the elements P_1 , P_2 are basis sources, the element P_0 is sources of completeness of the semilattice D. Therefore $|X| \ge 2$ since $|P_1| \ge 1$ and $|P_2| \ge 1$.

It is well know the following statement (see [4],).

Theorem 2.1. Let $D = \{Z_2, Z_1, \check{D}\} \in \Sigma_1(X,3)$ and $Z_2 \neq \emptyset$. If $E_X^{(r)}(D)$ be the set all right units of the semigroup $B_X(D)$,

$$\sigma_{1} = (Z_{2} \times Z_{2}) \cup ((X \setminus Z_{2}) \times Z_{1}), \ \sigma_{2} = (Z_{2} \times Z_{2}) \cup ((X \setminus Z_{2}) \times \check{D}),$$

$$\sigma_{3} = (Z_{1} \times Z_{2}) \cup ((X \setminus Z_{1}) \times \check{D}), \ \sigma_{4} = (Z_{1} \times Z_{1}) \cup ((X \setminus Z_{1}) \times \check{D})$$

and $B' = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}$, then $B = E_X^{(r)}(D) \cup B'$ is irreducible generated set for the semigroup $B_X(D)$. In the sequel, we will be assumption, that $Z_2 = \emptyset$.

International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 5, Issue 6, November 2016

Lemma 2.1. Let $D = \{\emptyset, Z_1, \check{D}\} \in \Sigma_1(X,3)$ and $B = \{\alpha \in B_X(D) | V(X^*, \alpha) = D\}$. Then the following statements are true:

- **a**) $B \neq \emptyset$ if and only if, when $|X| \ge 3$;
- **b**) $P_0 = \cap D = \emptyset$, $P_1 = \overline{D} \setminus Z_1$ and $P_2 = Z_1$;
- c) If $\alpha = \delta \circ \beta$, for some $\alpha \in B$, $\delta, \beta \in B_{\chi}(D)$, then $V(D, \beta) = D$;
- **d**) if $|X| \ge 3$, then B is a set external elements of the semigroup $B_X(D)$.

Proof. Let $D = \{\emptyset, Z_1, \overline{D}\} \in \Sigma_1(X,3)$,

1) If $B \neq \emptyset$ and $\alpha \in B$ for some $\alpha \in B_X(D)$, then, there exists quasinormal representations of a binary relation α of the form

$$\alpha = (Y_2^{\alpha} \times \varnothing) \cup (Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \breve{D}),$$

Where $\left|Y_i^{\alpha}\right| \ge 1$ for all i = 0, 1, 2 (if $Y_j^{\delta} = \emptyset$ for some j $(0 \le j \le 2)$, then $V(X^*, \alpha) \ne D$). So, the inequality $|X| \ge 3$ is true. Of this we obtain, that $B = \emptyset$, if |X| = 2.

The statement a) of the Lemma 2.1 is proved.

2) By assumption $Z_2 = \emptyset$, then by definition of the set P_0 we obtain, that $P_0 = \bigcap D = \emptyset$. Now, from the formal equality (2.1) follows that $P_2 = Z_1$ and $P_1 = \breve{D} \setminus P_2 = \breve{D} \setminus Z_1$ since $P_2 \cap P_1 = \emptyset$.

The statement b) of the Lemma 2.1 is proved.

3) Let $\alpha = \delta \circ \beta$, for some $\alpha \in B$, $\delta, \beta \in B_X(D)$. Then $D = V(X^*, \alpha) \subseteq V(D, \beta)$ (see [1], Theorem 4.1.1). So, $D = V(D, \beta)$ since the inclusion $V(D, \beta) \subseteq D$ for any semilattice D always is hold.

The statement c) of the Lemma 2.1 is proved.

4) Now, let $\alpha = \delta \circ \beta$ for some $\alpha \in B$ and $\delta, \beta \in B_X(D) \setminus \{\alpha\}$, then quasinormal representation of a binary relations α and δ has a form

$$\alpha = (Y_2^{\alpha} \times \varnothing) \cup (Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \breve{D}) \text{ and } \delta = (Y_2^{\delta} \times \varnothing) \cup (Y_1^{\delta} \times Z_1) \cup (Y_0^{\delta} \times \breve{D}),$$

Where $Y_2^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$, i.e. $V(X^*, \alpha) = D$. By Theorem 1.2 follows that $\alpha = \delta \circ \beta = \delta \circ \overline{\beta}$, where $\overline{\beta}$ is subquasinormal representation of a binary relation β . It is easy to see, that

$$\alpha = \delta \circ \overline{\beta} = (Y_2^{\delta} \times \emptyset) \cup (Y_1^{\delta} \times Z_1 \overline{\beta}) \cup (Y_0^{\delta} \times \overline{D} \overline{\beta}). \qquad \dots (2.2)$$

For the sets X and \check{D} we consider the following cases:

a') $X = \overline{D}$. Then from the equality (1.2) follows that $\overline{\beta}_2$ is empty mapping since $X \setminus \overline{D} = \emptyset$. So, there exists only two subquasinormal representations $\overline{\beta}$ of a binary relation β for which $V(D, \beta) = D$ (see statement c) of the Lemma 2.1) and $\overline{\beta} = \beta$:

$$\overline{\beta} = (\varnothing \times \varnothing) \cup ((\overline{D} \setminus Z_1) \times Z_1) \cup (Z_1 \times \overline{D}) \text{ or } \overline{\beta} = (\varnothing \times \varnothing) \cup (Z_1 \times Z_1) \cup ((\overline{D} \setminus Z_1) \times \overline{D}),$$

where $\overline{\beta} \in B_{x}(D)$.

If $\overline{\beta} = (\varnothing \times \varnothing) \cup ((\overline{D} \setminus Z_1) \times Z_1) \cup (Z_1 \times \overline{D})$, then

$$\delta \circ \overline{\beta} = (Y_2^{\delta} \times \varnothing) \cup (Y_1^{\delta} \times Z_1 \overline{\beta}) \cup (Y_0^{\delta} \times \overline{D} \overline{\beta}) =$$

$$= (Y_2^{\delta} \times \varnothing) \cup (Y_1^{\delta} \times \overline{D}) \cup (Y_0^{\delta} \times \overline{D}) = (Y_2^{\delta} \times \varnothing) \cup ((Y_1^{\delta} \cup Y_0^{\delta}) \times \overline{D}) \notin B$$

since $V(X^*, \delta \circ \overline{\beta}) \subseteq \{\emptyset, \widecheck{D}\} \neq D$. So, we have that $\alpha \neq \delta \circ \overline{\beta}$.

If
$$\overline{\beta} = (\varnothing \times \varnothing) \cup (Z_1 \times Z_1) \cup ((\overline{D} \setminus Z_1) \times \overline{D})$$
, then

International Journal of Engineering Science and Innovative Technology (IJESIT)

Volume 5, Issue 6, November 2016

$$\delta \circ \overline{\beta} = (Y_2^{\alpha} \times \emptyset) \cup (Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \overline{D}) =$$

$$= (Y_2^{\delta} \times \emptyset) \cup (Y_1^{\delta} \times Z_1 \overline{\beta}) \cup (Y_0^{\delta} \times \overline{D} \overline{\beta}) =$$

$$= (Y_2^{\delta} \times \emptyset) \cup (Y_1^{\delta} \times Z_1) \cup (Y_0^{\delta} \times \overline{D}).$$

So, $Y_2^{\delta} = Y_2^{\alpha}$, $Y_1^{\delta} = Y_1^{\alpha}$, $Y_0^{\delta} = Y_0^{\alpha}$. Of this follows that $\alpha = \delta$. But, the equality $\alpha = \delta$ contradict the condition $\delta \in B_{\gamma}(D) \setminus \{\alpha\}$. So, we have that $\alpha \neq \delta \circ \overline{\beta}$.

In the sequel we will be assumption, that $X \neq \overline{D}$.

b') Let $|X \setminus \overline{D}| \ge 1$. By preposition we have $P_0 = \emptyset$. In this case

$$\begin{split} & \overline{\beta}_{_{1}}^{1} = \begin{pmatrix} \varnothing & \overline{D} \setminus Z_{1} & Z_{1} \\ \varnothing & \varnothing & \varnothing \end{pmatrix}, \ \overline{\beta}_{_{1}}^{2} = \begin{pmatrix} \varnothing & \overline{D} \setminus Z_{1} & Z_{1} \\ \varnothing & \varnothing & Z_{1} \end{pmatrix}, \ \overline{\beta}_{_{1}}^{3} = \begin{pmatrix} \varnothing & \overline{D} \setminus Z_{1} & Z_{1} \\ \varnothing & Z_{1} & \varnothing \end{pmatrix}, \\ & \beta_{_{1}}^{4} = \begin{pmatrix} \varnothing & \overline{D} \setminus Z_{1} & Z_{1} \\ \varnothing & Z_{1} & Z_{1} \end{pmatrix}, \ \overline{\beta}_{_{1}}^{5} = \begin{pmatrix} \varnothing & \overline{D} \setminus Z_{1} & Z_{1} \\ \varnothing & Z_{1} & \overline{D} \end{pmatrix}, \ \overline{\beta}_{_{1}}^{6} = \begin{pmatrix} \varnothing & \overline{D} \setminus Z_{1} & Z_{1} \\ \varnothing & \varnothing & \overline{D} \end{pmatrix}, \\ & \overline{\beta}_{_{1}}^{7} = \begin{pmatrix} \varnothing & \overline{D} \setminus Z_{1} & Z_{1} \\ \varnothing & \overline{D} & \overline{D} \end{pmatrix}, \ \overline{\beta}_{_{1}}^{8} = \begin{pmatrix} \varnothing & \overline{D} \setminus Z_{1} & Z_{1} \\ \varnothing & \overline{D} & \varnothing \end{pmatrix}, \ \overline{\beta}_{_{1}}^{9} = \begin{pmatrix} \varnothing & \overline{D} \setminus Z_{1} & Z_{1} \\ \varnothing & \overline{D} & Z_{1} \end{pmatrix}. \end{split}$$

are all mappings of the set $C(D) = \{\emptyset, P_1, P_2\}$ (see statement b) of the Lemma 2.1) in the semilattice D satisfying the condition $\overline{\beta}_i^i(P_0) = \emptyset$ (i = 1, 2, ..., 8, 9).

Let $\beta \in B_X(D)$ and $\overline{\beta}$ is such subquasinormal representation of a binary relation β for which β_1^i (i = 1, 2, ..., 8, 9) is normal mapping for the binary relation $\overline{\beta}$.

For a binary relation $\bar{\beta}$ we consider the following cases:

1) If
$$\overline{\beta}_{1}^{1} = \begin{pmatrix} \varnothing & \overline{D} \setminus Z_{1} & Z_{1} \\ \varnothing & \varnothing & \varnothing \end{pmatrix}$$
, and $\overline{\beta}_{2}^{1}$ be any mapping of the set $X \setminus \overline{D}$ in the set $D \setminus \{\varnothing\} = \{Z_{1}, \overline{D}\}$. So, if

$$\overline{\beta} = \left(\overline{D} \times \varnothing\right) \cup \bigcup_{t' \in X \setminus \overline{D}} \left(\{t'\} \times \overline{\beta}_{2}^{1}(t') \right), \qquad \dots (2.3)$$

then $\overline{\beta} \in B_{X}(D)$. From the equalities (2.2) and (2.3) we obtain that:

$$\begin{split} &Z_{1}\overline{\beta}=\varnothing,\ \breve{D}\overline{\beta}=\varnothing,\\ &\delta\circ\overline{\beta}=\left(Y_{2}^{\delta}\times\varnothing\right)\cup\left(Y_{1}^{\delta}\times Z_{1}\overline{\beta}\right)\cup\left(Y_{0}^{\delta}\times\breve{D}\overline{\beta}\right)=\\ &=\left(Y_{2}^{\delta}\times\varnothing\right)\cup\left(Y_{1}^{\delta}\times\varnothing\right)\cup\left(Y_{0}^{\delta}\times\varnothing\right)=X\times\varnothing=\varnothing\notin B \end{split}$$

since $V(X^*, \delta \circ \overline{\beta}) \subseteq \{\emptyset\} \neq D$. So, we have that $\alpha \neq \delta \circ \overline{\beta}$.

2) If
$$\bar{\beta}_{_{1}}^{2} = \begin{pmatrix} \varnothing & \bar{D} \setminus Z_{_{1}} & Z_{_{1}} \\ \varnothing & \varnothing & Z_{_{1}} \end{pmatrix}$$
 and $\bar{\beta}_{_{2}}^{2}$ be a mapping of the set $X \setminus \bar{D}$ in the set $D \setminus \{\varnothing, Z_{_{1}}\} = \{\bar{D}\}$. So, if

$$\overline{\beta} = \left(\left(\overline{D} \setminus Z_1 \right) \times \varnothing \right) \cup \left(Z_1 \times Z_1 \right) \cup \bigcup_{t' \in X \setminus \overline{D}} \left(\left\{ t' \right\} \times \overline{\beta}_2^2 \left(t' \right) \right), \qquad \dots (2.4)$$

then $\bar{\beta} \in B_{X}(D)$. From the equalities (2.2) and (2.4) follows that:

$$\begin{split} &Z_{1}\overline{\beta}=Z_{1},\ \breve{D}\overline{\beta}=Z_{1},\\ &\delta\circ\overline{\beta}=\left(Y_{2}^{\delta}\times\varnothing\right)\cup\left(Y_{1}^{\delta}\times Z_{1}\overline{\beta}\right)\cup\left(Y_{0}^{\delta}\times\breve{D}\overline{\beta}\right)=\\ &=\left(Y_{2}^{\delta}\times\varnothing\right)\cup\left(Y_{1}^{\delta}\times Z_{1}\right)\cup\left(Y_{0}^{\delta}\times Z_{1}\right)=\left(Y_{2}^{\delta}\times\varnothing\right)\cup\left(\left(Y_{1}^{\delta}\cup Y_{0}^{\delta}\right)\times Z_{1}\right)\not\in\mathcal{B} \end{split}$$

since $V(X^*, \delta \circ \overline{\beta}) \subseteq \{\emptyset, Z_1\} \neq D$. So, we have that $\alpha \neq \delta \circ \overline{\beta}$.

For the mapping $\overline{\beta}_{1}^{3} = \begin{pmatrix} \varnothing & \widecheck{D} \setminus Z_{1} & Z_{1} \\ \varnothing & Z_{1} & \varnothing \end{pmatrix}$, we analogically above, may proved that $\alpha \neq \delta \circ \overline{\beta}$.

3) If
$$\beta_1^4 = \begin{pmatrix} \varnothing & \overline{D} \setminus Z_1 & Z_1 \\ \varnothing & Z_1 & Z_1 \end{pmatrix}$$
 and $\overline{\beta}_2^4$ be a mapping of the set $X \setminus \overline{D}$ in the set $D \setminus \{\varnothing, Z_1\} = \{\overline{D}\}$. So, if

International Journal of Engineering Science and Innovative Technology (IJESIT)

Volume 5, Issue 6, November 2016

$$\overline{\beta} = \left(\overline{D} \times Z_1\right) \cup \bigcup_{t' \in X \setminus \overline{D}} \left(\left\{t'\right\} \times \overline{\beta}_2^4\left(t'\right)\right), \qquad \dots (2.5)$$

then $\bar{\beta} \in B_x(D)$. From the equalities (2.2) and (2.5) we obtain:

$$\begin{split} &Z_{1}\overline{\beta} = \widecheck{D}\overline{\beta} = Z_{1}, \\ &\delta \circ \overline{\beta} = \left(Y_{2}^{\delta} \times \varnothing\right) \cup \left(Y_{1}^{\delta} \times Z_{1}\overline{\beta}\right) \cup \left(Y_{0}^{\delta} \times \widecheck{D}\overline{\beta}\right) = \\ &= \left(Y_{2}^{\delta} \times \varnothing\right) \cup \left(Y_{1}^{\delta} \times Z_{1}\right) \cup \left(Y_{0}^{\delta} \times Z_{1}\right) = \left(Y_{2}^{\delta} \times \varnothing\right) \cup \left(\left(Y_{1}^{\delta} \cup Y_{0}^{\delta}\right) \times Z_{1}\right) \notin B \end{split}$$

since $V(X^*, \delta \circ \overline{\beta}) \subseteq \{\emptyset, Z_1\} \neq D$. So, we have that $\alpha \neq \delta \circ \overline{\beta}$.

4) If $\overline{\beta}_{_{1}}^{5} \subseteq \beta$, where $\overline{\beta}_{_{1}}^{5} = \begin{pmatrix} \varnothing & \overline{D} \setminus Z_{_{1}} & Z_{_{1}} \\ \varnothing & Z_{_{1}} & \overline{D} \end{pmatrix}$ and $\overline{\beta}_{_{2}}^{5}$ be a mapping of the set $X \setminus \overline{D}$ in the set D. So, if

$$\overline{\beta} = \left(\left(\widecheck{D} \setminus Z_1 \right) \times Z_1 \right) \cup \left(Z_1 \times \widecheck{D} \right) \cup \bigcup_{t' \in Y \setminus \widecheck{D}} \left(\left\{ t' \right\} \times \overline{\beta}_2^5 \left(t' \right) \right), \qquad \dots (2.6)$$

then $\overline{\beta} \in B_X(D)$. From the equalities (2.2) and (2.6) we have:

$$\begin{split} &Z_{1}\overline{\beta}=\breve{D},\ \breve{D}\overline{\beta}=\breve{D},\\ &\delta\circ\overline{\beta}=\left(Y_{2}^{\delta}\times\varnothing\right)\cup\left(Y_{1}^{\delta}\times Z_{1}\overline{\beta}\right)\cup\left(Y_{0}^{\delta}\times\breve{D}\overline{\beta}\right)=\\ &=\left(Y_{2}^{\delta}\times\varnothing\right)\cup\left(Y_{1}^{\delta}\times\breve{D}\right)\cup\left(Y_{0}^{\delta}\times\breve{D}\right)=\left(Y_{2}^{\delta}\times\varnothing\right)\cup\left(\left(Y_{1}^{\delta}\cup Y_{0}^{\delta}\right)\times\breve{D}\right)\not\in\mathcal{B} \end{split}$$

since $V(X^*, \delta \circ \overline{\beta}) \subseteq \{\emptyset, \widecheck{D}\} \neq D$. So, we have that $\alpha \neq \delta \circ \overline{\beta}$.

For the mappings β are $\bar{\beta}_{_{1}}^{6} = \begin{pmatrix} \varnothing & \bar{D} \setminus Z_{_{1}} & Z_{_{1}} \\ \varnothing & \varnothing & \bar{D} \end{pmatrix}$, $\bar{\beta}_{_{1}}^{7} = \begin{pmatrix} \varnothing & \bar{D} \setminus Z_{_{1}} & Z_{_{1}} \\ \varnothing & \bar{D} & \bar{D} \end{pmatrix}$, then we analogically above may proved, that $\alpha \neq \delta \circ \bar{\beta}$.

5) If $\bar{\beta}_{_{1}}^{8} \subseteq \beta$, where $\bar{\beta}_{_{1}}^{8} = \begin{pmatrix} \varnothing & \breve{D} \setminus Z_{_{1}} & Z_{_{1}} \\ \varnothing & \breve{D} & \varnothing \end{pmatrix}$ and $\bar{\beta}_{_{2}}^{8}$ be a mapping of the set $X \setminus \breve{D}$ in the $D \setminus \{\varnothing, \breve{D}\} = \{Z_{_{1}}\}$. So, if

$$\overline{\beta} = (Z_1 \times \varnothing) \cup ((\overline{D} \setminus Z_1) \times \overline{D}) \cup \bigcup_{t' \in X \setminus \overline{D}} (\{t'\} \times \overline{\beta}_2^8(t')), \qquad \dots (2.7)$$

then $\bar{\beta} \in B_X(D)$. From the equalities (2.2) and (2.7) we obtain, that:

$$Z_{1}\overline{\beta} = \varnothing, \ \overline{D}\overline{\beta} = \overline{D},$$

$$\delta \circ \overline{\beta} = \left(Y_{2}^{\delta} \times \varnothing\right) \cup \left(Y_{1}^{\delta} \times Z_{1}\overline{\beta}\right) \cup \left(Y_{0}^{\delta} \times \overline{D}\overline{\beta}\right) =$$

$$= \left(Y_{2}^{\delta} \times \varnothing\right) \cup \left(Y_{1}^{\delta} \times \varnothing\right) \cup \left(Y_{0}^{\delta} \times \overline{D}\right) = \left(\left(Y_{2}^{\delta} \cup Y_{1}^{\delta}\right) \times \varnothing\right) \cup \left(Y_{0}^{\delta} \times \overline{D}\right) \notin B$$

$$= \left(\varnothing \ \overline{D}\right) \neq D. \text{ So, we have that } \alpha \neq \delta \circ \overline{\beta}$$

since $V(X^*, \delta \circ \overline{\beta}) \subseteq \{\emptyset, \overline{D}\} \neq D$. So, we have that $\alpha \neq \delta \circ \overline{\beta}$.

6) If $\bar{\beta}_{_{1}}^{9} \subseteq \beta$, where $\bar{\beta}_{_{1}}^{9} = \begin{pmatrix} \varnothing & \bar{D} \setminus Z_{_{1}} & Z_{_{1}} \\ \varnothing & \bar{D} & Z_{_{1}} \end{pmatrix}$ and $\bar{\beta}_{_{2}}^{9}$ be a mapping of the set $X \setminus \bar{D}$ in the semilattice D. So, if

$$\overline{\beta} = (Z_1 \times Z_1) \cup ((\overline{D} \setminus Z_1) \times \overline{D}) \cup \bigcup_{t' \in X \setminus \overline{D}} (\{t'\} \times \overline{\beta}_2^9(t')), \qquad \dots (2.8)$$

then $\overline{\beta} \in B_X(D)$. From the equalities (2.2) and (2.8) follows that:

$$\begin{split} &Z_{1}\overline{\beta}=Z_{1},\ \breve{D}\overline{\beta}=\breve{D},\\ &\delta\circ\overline{\beta}=\left(Y_{2}^{\delta}\times\varnothing\right)\cup\left(Y_{1}^{\delta}\times Z_{1}\overline{\beta}\right)\cup\left(Y_{0}^{\delta}\times\breve{D}\overline{\beta}\right)=\\ &=\left(Y_{2}^{\delta}\times\varnothing\right)\cup\left(Y_{1}^{\delta}\times\varnothing\right)\cup\left(Y_{0}^{\delta}\times\breve{D}\right)=\left(Y_{2}^{\delta}\times\varnothing\right)\cup\left(Y_{1}^{\delta}\times Z_{1}\right)\cup\left(Y_{0}^{\delta}\times\breve{D}\right). \end{split}$$

So, $Y_2^{\delta} = Y_2^{\alpha}$, $Y_1^{\delta} = Y_1^{\alpha}$, $Y_0^{\delta} = Y_0^{\alpha}$. Of this follows, that $\alpha = \delta$. But, the equality $\alpha = \delta$ contradict the condition, that $\delta \in B_Y(D) \setminus \{\alpha\}$. So, we have that $\alpha \neq \delta \circ \overline{\beta}$.

International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 5, Issue 6, November 2016

Thus, we have $\alpha \neq \delta \circ \overline{\beta}$ for any subquasinormal representation of a binary relation $\beta \in B_X(D) \setminus \{\alpha\}$ since the mappings $\overline{\beta}_1^1 - \overline{\beta}_1^9$ are all mappings of the set $C(D) = \{\emptyset, P_1, P_2\}$ in the semilattice D satisfying the condition $\overline{\beta}_1^i(\emptyset) = \emptyset$ (i = 1, 2, ..., 9). Of this and by Theorem 1.3 follows that $\alpha \neq \delta \circ \beta$ for all $\delta, \beta \in B_X(D) \setminus \{\alpha\}$.

So, we have that the set B (if $B \neq \emptyset$, i.e. $|X| \ge 3$) is a set external elements of the semigroup $B_X(D)$. Lemma 2.1 is proved.

Lemma 2.2. Let $|X| \ge 3$ and $D = \{\emptyset, Z_1, \check{D}\} \in \Sigma_1(X,3)$, then the following statements are true:

- **a**) $Z_1\beta = \emptyset$, $D\beta = Z_1$ for some $\beta \in B$ if and only if, when $|X \setminus D| \ge 1$;
- **b**) $Z_1\beta = \breve{D}\beta = Z_1$ for some $\beta \in B$ if and only if $|X \setminus \breve{D}| \ge 1$;
- **c**) $Z_1\beta = \overline{D}\beta = \emptyset$ for some $\beta \in B$ if and only if $|X \setminus \overline{D}| \ge 2$.

Proof. Let $Z_1\beta=\varnothing$, $\breve{D}\beta=Z_1$ for some $\beta\in B$. Then quainormal representation of a binary relation β has e form $\beta=\left(Y_2^\beta\times\varnothing\right)\cup\left(Y_1^\beta\times Z_1\right)\cup\left(Y_0^\beta\times\breve{D}\right)$, where $Y_2^\beta,Y_1^\beta,Y_0^\beta\notin\left\{\varnothing\right\}$. By preposition $\breve{D}\cap Y_0^\beta=\varnothing$ since $\breve{D}\beta=Z_1$. So, $\varnothing\neq Y_0^\beta\subseteq X\setminus\breve{D}$, i.e. $|X\setminus\breve{D}|\ge 1$.

In the other hand, if $|X \setminus \overline{D}| \ge 1$, then $\beta = (Z_1 \times \varnothing) \cup ((\overline{D} \setminus Z_1) \times Z_1) \cup ((X \setminus \overline{D}) \times \overline{D})$ is a binary relation of the set B, for which $Z_1\beta = \varnothing$ and $\overline{D}\beta = Z_1$.

The statement a) of the Lemma 2.2 is proved.

Let $Z_1\beta=reve{D}\beta=Z_1$ for some $\beta\in B$. Then quainormal representation of a binary relation β has e form $\beta=\left(Y_2^\beta\times\varnothing\right)\cup\left(Y_1^\beta\times Z_1\right)\cup\left(Y_0^\beta\times reve{D}\right),$ where $Y_2^\beta,Y_1^\beta,Y_0^\beta\not\in\{\varnothing\}$ and $Y_0^\beta\cap reve{D}=\varnothing$. Of this follows, that $\varnothing\neq Y_0^\beta\subseteq X\setminus reve{D}$, i.e. $\left|X\setminus reve{D}\right|\geq 1$ since $Y_0^\beta\not\in\{\varnothing\}$.

Of the other hand, if $|X \setminus \overline{D}| \ge 1$, then for the binary relation

$$\beta = ((\bar{D} \setminus Z_1) \times \varnothing) \cup (Z_1 \times Z_1) \cup ((X \setminus \bar{D}) \times \bar{D})$$

we have $\beta \in B$ and $Z_1\beta = \overline{D}\beta = Z_1$.

The statement b) of the Lemma 2.2 is proved.

Let $Z_1\beta=ar{D}\beta=\varnothing$ for some $\beta\in B$. Then quainormal representation of a binary relation β has e form $\beta=\left(Y_2^\beta\times\varnothing\right)\cup\left(Y_1^\beta\times Z_1\right)\cup\left(Y_0^\beta\times ar{D}\right)$, where $Y_2^\beta,Y_1^\beta,Y_0^\beta\not\in\{\varnothing\}$ and $t\beta=\varnothing$ for all $t\in ar{D}$ since \varnothing is smallest element of the semilattice D. So, if $Y_2^\beta=ar{D}$, $t_1\beta=Z_1$ and $t_0\beta=ar{D}$ for some $t_1,t_0\in X\setminus ar{D}$. It is easy to see, that Y_2^β , Y_1^β and Y_0^β are smallest sets for which $\beta\in B$. Of this follows that $\left|X\setminus ar{D}\right|\geq 2$.

Of the other hand, let $|X \setminus \overline{D}| \ge 2$, i.e. $X \setminus \overline{D} \supseteq \{t_1, t_0\}$, then for the binary relation

$$\beta = (\breve{D} \times \varnothing) \cup (\{t_1\} \times Z_1) \cup ((X \setminus (\breve{D} \cup \{t_1\})) \times \breve{D})$$

we have $\beta \in B$ since $X \setminus (\bar{D} \cup \{t_1\}) \neq \emptyset$ and $Z_1\beta = \bar{D}\beta = \emptyset$.

The statement c) of the Lemma 2.2 is proved.

Lemma 2.2 is proved.

In the sequel, by symbols B_1 , B_2 and B_3 we denoted the following sets:

$$\begin{split} B_1 &= \left\{ \alpha \in B_X \left(D \right) | \, \mathbf{V} \left(X^*, \alpha \right) = \left\{ Z_1, \widecheck{D} \right\} \right\}, \\ B_2 &= \left\{ \alpha \in B_X \left(D \right) | \, \mathbf{V} \left(X^*, \alpha \right) = \left\{ \varnothing, \widecheck{D} \right\} \right\}, \\ B_3 &= \left\{ \alpha \in B_X \left(D \right) | \, \mathbf{V} \left(X^*, \alpha \right) = \left\{ \varnothing, Z_1 \right\} \right\}. \end{split}$$

International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 5, Issue 6, November 2016

By definition of a sets B_1 , B_2 and B_3 immediately follows, that

$$B_1 \cap B_2 = B_1 \cap B_3 = B_2 \cap B_3 = \emptyset.$$
 ... (2.9)

Lemma 2.3. Let $|X| \ge 3$, $D = \{\emptyset, Z_1, \overline{D}\} \in \Sigma_1(X,3)$ and

$$B = \left\{ \alpha \in B_X \left(D \right) | V \left(X^*, \alpha \right) = D \right\}.$$

Then the following statements are true;

- **a**) the elements of the set $B_1 \cup \{X \times Z_1, X \times \overline{D}\}\$ do not generating by elements of the set B;
- **b)** if $|X \setminus \overline{D}| \le 1$, then element $\alpha = \emptyset$ do not generating by elements of the set B;
- c) if X = D, then elements of the set B_3 do not generating by elements of the set B.

Proof. Let $\alpha = \delta \circ \beta$ for some $\alpha \in B_X(D)$ and $\delta, \beta \in B$. Then quasinormal representation of the binary relation δ has a form $\delta = (Y_2^{\delta} \times \emptyset) \cup (Y_1^{\delta} \times Z_1) \cup (Y_0^{\delta} \times \overline{D})$, where $Y_2^{\delta}, Y_1^{\delta}, Y_0^{\delta} \notin \{\emptyset\}$. In this case the following equalities are hold:

$$\alpha = \delta \circ \beta = (Y_2^{\delta} \times \varnothing) \cup (Y_1^{\delta} \times Z_1 \beta) \cup (Y_0^{\delta} \times \breve{D}\beta) \qquad \dots (2.10)$$

For the binary relation α we consider the following cases:

1) If $\alpha \in B_X(D') = B_1 \cup \{X \times Z_1, X \times \overline{D}\}$, where $D' = \{Z_1, \overline{D}\}$, then quasinormal representation of the binary relation α has a form $\alpha = (Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \overline{D})$. From the equality (2.10) we obtain that

$$(Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \overline{D}) = \alpha = \delta \circ \beta = (Y_2^{\delta} \times \emptyset) \cup (Y_1^{\delta} \times Z_1 \beta) \cup (Y_0^{\delta} \times \overline{D} \beta).$$

But last equality impossible since $Y_2^{\delta} \neq \emptyset$. So, the elements of the set $B_1 \cup \{X \times Z_1, X \times \widetilde{D}\}$ do not generating by elements of the set B.

The statement a) of the lemma 2.3 is proved.

2) Now, if $\alpha = \emptyset$, then From the equality (2.10) follows that

$$\emptyset = \alpha = \delta \circ \beta = (Y_2^{\delta} \times \emptyset) \cup (Y_1^{\delta} \times Z_1 \beta) \cup (Y_0^{\delta} \times \widetilde{D}\beta).$$

Of the last equalities follows that $Z_1\beta = \check{D}\beta = \varnothing$. But by statement c) of the lemma 2.2 the equality $Z_1\beta = \check{D}\beta = \varnothing$ for some $\beta \in B$ is possible only if , when $\left|X \setminus \check{D}\right| \ge 2$. So, if $\left|X \setminus \check{D}\right| \le 1$, then binary relation $\alpha = \varnothing$ do not generating by elements of the set B.

The statement b) of the lemma 2.3 is proved.

3) Let X = D and $\alpha \in B_3$, then quasinormal representation of the binary relation α has a form $\alpha = (Y_2^{\alpha} \times \varnothing) \cup (Y_1^{\alpha} \times Z_1)$, where $Y_2^{\alpha}, Y_1^{\alpha} \notin \{\varnothing\}$. Then from the equality (2.10) follows that

$$(Y_2^{\alpha} \times \varnothing) \cup (Y_1^{\alpha} \times Z_1) = \alpha = \delta \circ \beta = (Y_2^{\delta} \times \varnothing) \cup (Y_1^{\delta} \times Z_1\beta) \cup (Y_0^{\delta} \times \overline{D}\beta).$$

Last equalities is possible only if $Z_1\beta = \emptyset$, $\overline{D}\beta = Z_1$ or $Z_1\beta = \overline{D}\beta = Z_1$ since $Z_1 \subset \overline{D}$.

- a') If $Z_1\beta = \emptyset$, $\bar{D}\beta = Z_1$, then by statement a) of the Lemma 2.2 follows that $|X \setminus \bar{D}| \ge 1$ which contradict the conditions $X = \bar{D}$.
- b') If $Z_1\beta = D\beta = Z_1$, then by statement b) of the Lemma 2.2 follows that $|X \setminus \overline{D}| \ge 1$ which contradict the conditions $X = \overline{D}$.

So, of the conditions a') and b') follows that the elements of the set B_3 do not generating by elements of the set B.

The statement c) of the lemma 2.3 is proved.

Lemma 2.3 is proved.

International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 5, Issue 6, November 2016

Lemma 2.4. Let $|X| \ge 3$, $D = \{\emptyset, Z_1, \check{D}\} \in \Sigma_1(X,3)$ and

$$B = \left\{ \alpha \in B_X \left(D \right) \mid V \left(X^*, \alpha \right) = D \right\}, \ \gamma_0 = \left(Z_1 \times \varnothing \right) \cup \left(\left(X \setminus Z_1 \right) \times Z_1 \right).$$

Then the following statements are true:

- **a**) if $|X \setminus \overline{D}| \ge 1$, then elements of the set $B_2 \cup B_3$ are generating by elements of the set B;
- **b**) if X = D, then the elements of the set B_3 are generating by elements of the set $B \cup B_1 \cup \{\gamma_0\}$;
- **c**) if X = D, then the elements of the set B_2 are generating by elements of the set $B_1 \cup \{\gamma_0\}$.

Proof. Now, let $|X \setminus \overline{D}| \ge 1$ and α be arbitrary element of the set $B_2 \cup B_3$. For the binary relation α we consider the following cases.

- 1) $\alpha \in B_2$. Then quasinormal representation of a binary relation α has a form $\alpha = (Y_2^{\alpha} \times \emptyset) \cup (Y_0^{\alpha} \times \widetilde{D})$, where $Y_2^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$.
 - a') If $\left|Y_0^\alpha\right| \ge 1$, then $\left|Y_2^\alpha\right| \ge 2$ ($\left|X\right| \ge 3$) (see statement a) of the Lemma 2.1). In this case we suppose, that $\beta = \left(Z_1 \times \varnothing\right) \cup \left(\left(X \setminus \breve{D}\right) \times Z_1\right) \cup \left(\left(\breve{D} \setminus Z_1\right) \times \breve{D}\right),$

then $\beta \in B$ since $|X \setminus \widetilde{D}| \ge 1$ and

$$\delta \circ \beta = (Y_2^{\delta} \times \varnothing) \cup (Y_1^{\delta} \times Z_1 \beta) \cup (Y_0^{\delta} \times \overline{D}\beta) =$$

$$= (Y_2^{\delta} \times \varnothing) \cup (Y_1^{\delta} \times \varnothing) \cup (Y_0^{\delta} \times \overline{D}) =$$

$$= ((Y_2^{\delta} \cup Y_1^{\delta}) \times \varnothing) \cup (Y_0^{\delta} \times \overline{D}) = \alpha,$$

 $\text{if} \ \ Y_2^\delta \cup Y_1^\delta = Y_2^\alpha \ \text{and} \ \ Y_0^\delta = Y_0^\alpha \ \text{since} \ \left|Y_2^\delta\right| \ge 1 \ , \ \left|Y_1^\delta\right| \ge 1 \ \text{and} \ \left|Y_0^\delta\right| \ge 1 \ .$

b') Let $\left|Y_2^{\alpha}\right| \ge 1$, then $\left|Y_0^{\alpha}\right| \ge 2 \ \left(\left|X\right| \ge 3\right)$. In this case we suppose, that

$$\beta = ((\breve{D} \setminus Z_1) \times \varnothing) \cup ((X \setminus \breve{D}) \times Z_1) \cup (Z_1 \times \breve{D}),$$

then $\beta \in B$ since $|X \setminus \overline{D}| \ge 1$ and

$$\delta \circ \beta = (Y_2^{\delta} \times \varnothing) \cup (Y_1^{\delta} \times Z_1 \beta) \cup (Y_0^{\delta} \times \overline{D} \beta) =$$

$$= (Y_2^{\delta} \times \varnothing) \cup (Y_1^{\delta} \times \overline{D}) \cup (Y_0^{\delta} \times \overline{D}) =$$

$$= (Y_2^{\delta} \times \varnothing) \cup ((Y_1^{\delta} \cup Y_0^{\delta}) \times \overline{D}) = \alpha,$$

 $\text{if} \ Y_2^{\delta} = Y_2^{\alpha} \ \text{and} \ Y_1^{\delta} \cup Y_0^{\delta} = Y_0^{\alpha} \ \text{since} \ \left| Y_2^{\delta} \right| \ge 1 \ , \ \left| Y_1^{\delta} \right| \ge 1 \ \text{and} \ \left| Y_0^{\delta} \right| \ge 1 \ .$

Therefore, the elements of the set B_2 are generating by elements of the set B.

- 2) $\alpha \in B_3$. Then quasinormal representation of a binary relation α has a form $\alpha = (Y_2^{\alpha} \times \emptyset) \cup (Y_1^{\alpha} \times Z_1)$, where $Y_2^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$.
 - c') Let $\left|Y_1^{\alpha}\right| \ge 1$ then $\left|Y_2^{\alpha}\right| \ge 2 \ \left(\left|X\right| \ge 3\right)$. In this case we suppose, that

$$\beta = (Z_1 \times \varnothing) \cup ((\breve{D} \setminus Z_1) \times Z_1) \cup ((X \setminus \breve{D}) \times \breve{D}),$$

then $\beta \in B$ since $|X \setminus \overline{D}| \ge 1$ and

$$\delta \circ \beta = (Y_2^{\delta} \times \varnothing) \cup (Y_1^{\delta} \times Z_1 \beta) \cup (Y_0^{\delta} \times \overline{D}\beta) =$$

$$= (Y_2^{\delta} \times \varnothing) \cup (Y_1^{\delta} \times \varnothing) \cup (Y_0^{\delta} \times Z_1) =$$

$$= ((Y_2^{\delta} \cup Y_1^{\delta}) \times \varnothing) \cup (Y_0^{\delta} \times Z_1) = \alpha,$$

if $Y_2^{\delta} \cup Y_1^{\delta} = Y_2^{\alpha}$ and $Y_0^{\delta} = Y_1^{\alpha}$ since $\left|Y_2^{\delta}\right| \ge 1$, $\left|Y_1^{\delta}\right| \ge 1$ and $\left|Y_0^{\delta}\right| \ge 1$.

d') Let $\left|Y_2^{\alpha}\right| \ge 1$ then $\left|Y_1^{\alpha}\right| \ge 2 \ \left(\left|X\right| \ge 3\right)$. In this case we suppose, that

International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 5, Issue 6, November 2016

$$\beta = ((\breve{D} \setminus Z_1) \times \varnothing) \cup (Z_1 \times Z_1) \cup ((X \setminus \breve{D}) \times \breve{D}),$$

then $\beta \in B$ since $|X \setminus \widecheck{D}| \ge 1$ and

$$\delta \circ \beta = (Y_2^{\delta} \times \varnothing) \cup (Y_1^{\delta} \times Z_1 \beta) \cup (Y_0^{\delta} \times \overline{D}\beta) =$$

$$= (Y_2^{\delta} \times \varnothing) \cup (Y_1^{\delta} \times Z_1) \cup (Y_0^{\delta} \times Z_1) =$$

$$= (Y_2^{\delta} \times \varnothing) \cup ((Y_1^{\delta} \cup Y_0^{\delta}) \times Z_1) = \alpha,$$

if $Y_2^{\delta} = Y_2^{\alpha}$ and $Y_1^{\delta} \cup Y_0^{\delta} = Y_1^{\alpha}$ since $\left|Y_2^{\delta}\right| \ge 1$, $\left|Y_1^{\delta}\right| \ge 1$ and $\left|Y_0^{\delta}\right| \ge 1$.

Therefore, the elements of the set B_3 are generating by elements of the set B.

The statement a) of the Lemma 2.4 is proved.

3) Let $X = \widecheck{D}$, $\delta_0 = ((X \setminus Z_1) \times Z_1) \cup (Z_1 \times \widecheck{D})$ and binary relation α be any element of the set B_3 . Then $\delta_0 \in B_1$ and quasinormal representation of a binary relation α has a form $\alpha = (Y_2^\alpha \times \varnothing) \cup (Y_1^\alpha \times Z_1)$, where $Y_2^\alpha, Y_1^\alpha \notin \{\varnothing\}$. Now, let $\alpha = \delta \circ \beta$ for some $\delta, \beta \in (B \cup B_1 \cup \{\gamma_0\}) \setminus \{\alpha\}$.

For the sets Y_2^{α} and Y_1^{α} we consider the following cases.

e') let $Y_1^{\alpha} \ge 1$, then $Y_2^{\alpha} \ge 2$ ($|X| \ge 3$, by preposition) and $\delta \in B \setminus \{\alpha\}$, then by definition of a set B the quasinormal representation of a binary relation δ has a form $\delta = (Y_2^{\delta} \times \varnothing) \cup (Y_1^{\delta} \times Z_1) \cup (Y_0^{\delta} \times \overline{D})$, where $Y_2^{\delta}, Y_1^{\delta}, Y_0^{\delta} \notin \{\varnothing\}$ since $V(X^*, \delta) = D$ and

$$\begin{split} & \mathcal{S} \circ \gamma_0 = \left(Y_2^{\mathcal{S}} \times \varnothing\right) \cup \left(Y_1^{\mathcal{S}} \times Z_1 \gamma_0\right) \cup \left(Y_0^{\mathcal{S}} \times \widetilde{D} \gamma_0\right) = \\ & = \left(Y_2^{\mathcal{S}} \times \varnothing\right) \cup \left(Y_1^{\mathcal{S}} \times \varnothing\right) \cup \left(Y_0^{\mathcal{S}} \times Z_1\right) = \left(\left(Y_2^{\mathcal{S}} \cup Y_1^{\mathcal{S}}\right) \times \varnothing\right) \cup \left(Y_0^{\mathcal{S}} \times Z_1\right) = \alpha, \end{split}$$

if $Y_2^{\delta} \cup Y_1^{\delta} = Y_2^{\alpha}$ and $Y_0^{\delta} = Y_1^{\alpha}$ since $Y_2^{\delta}, Y_1^{\delta}, Y_0^{\delta} \notin \{\emptyset\}$.

f') If $Y_2^{\alpha} \ge 1$, then $Y_1^{\alpha} \ge 2$ and

$$\begin{split} \delta_0 \circ \gamma_0 = & \left(\left(X \setminus Z_1 \right) \times Z_1 \gamma_0 \right) \cup \left(Z_1 \times \breve{D} \gamma_0 \right) = \\ & = & \left(\left(X \setminus Z_1 \right) \times \varnothing \right) \cup \left(Z_1 \times Z_1 \right) = \gamma_1, \\ \delta \circ \gamma_1 = & \left(Y_2^{\delta} \times \varnothing \right) \cup \left(Y_1^{\delta} \times Z_1 \gamma_1 \right) \cup \left(Y_0^{\delta} \times \breve{D} \gamma_1 \right) = \\ & = & \left(Y_2^{\delta} \times \varnothing \right) \cup \left(Y_1^{\delta} \times Z_1 \right) \cup \left(Y_0^{\delta} \times Z_1 \right) = \left(Y_2^{\delta} \times \varnothing \right) \cup \left(\left(Y_1^{\delta} \cup Y_0^{\delta} \right) \times Z_1 \right) = \alpha, \end{split}$$

 $\text{if} \ \ Y_2^\delta = Y_2^\alpha \ \text{and} \ \ Y_1^\delta \cup Y_0^\delta = Y_1^\alpha \ \text{since} \ \ Y_2^\delta, Y_1^\delta, Y_0^\delta \not\in \left\{\varnothing\right\}.$

Thus, if $X = \overline{D}$, then the elements of the set B_3 are generated by elements of the set $B \cup B_1 \cup \{\gamma_0\}$. The statement b) of the Lemma 2.4 is proved.

4) Let $X = \overline{D}$ and α be arbitrary element of the set B_2 . Then quasinormal representation of a binary relation α has a form $\alpha = (Y_2^{\alpha} \times \emptyset) \cup (Y_0^{\alpha} \times \overline{D})$, where $Y_2^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$. Now, let $\alpha = \delta \circ \beta$ for some $\delta, \beta \in (B_1 \cup \{\gamma_0\}) \setminus \{\alpha\}$.

It is easy to see that the subsets Y_2^α and Y_0^α of the set X are two elements partitioning of the set X. Of this follows that $\delta = \left(Y_2^\alpha \times Z_1\right) \cup \left(Y_0^\alpha \times \check{D}\right)$ is any element of the set B_1 and $\gamma_0 \circ \delta_0 \in B_2$ by definition of the binary relations γ_0 and δ_0 .

$$\begin{split} \gamma_0 \circ \delta_0 &= \left(Z_1 \times \varnothing \delta \right) \cup \left(\left(X \setminus Z_1 \right) \times Z_1 \delta \right) = \\ &= \left(Z_1 \times \varnothing \right) \cup \left(\left(X \setminus Z_1 \right) \times \breve{D} \right) = \gamma_2, \\ \delta \circ \gamma_2 &= \left(Y_2^\alpha \times Z_1 \gamma_2 \right) \cup \left(Y_0^\alpha \times \breve{D} \gamma_2 \right) = \left(Y_2^\alpha \times \varnothing \right) \cup \left(Y_0^\alpha \times \breve{D} \right) = \alpha \end{split}$$

International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 5, Issue 6, November 2016

Of this follows that the elements of the set B_2 are generating by elements of the set $B_1 \cup \{\gamma_0\}$.

The statement c) of the Lemma 2.4 is proved.

Lemma 2.4 is proved.

Lemma 2.5. Let $|X| \ge 3$, $D = \{\emptyset, Z_1, \overline{D}\} \in \Sigma_1(X,3)$,

$$B = \left\{\alpha \in B_{X}\left(D\right) \mid V\left(X^{*},\alpha\right) = D\right\} \text{ and } B_{1} = \left\{\alpha \in B_{X}\left(D\right) \mid V\left(X^{*},\alpha\right) = \left\{Z_{1},\widecheck{D}\right\}\right\}.$$

If $|X \setminus \overline{D}| \ge 1$, then the set $B'_1 = B \cup B_1$ is irreducible generating set for the semi group $B_X(D)$.

Proof. Let $|X| \ge 3$ and $|X \setminus D| \ge 1$. First, we proved that every element of the semi group $B_X(D)$ is generating by elements of the set B_1' . Indeed, let α be arbitrary element of the semi group $B_X(D)$. Then quasinormal representation of a binary relation α has a form

$$\alpha = (Y_2^{\alpha} \times \varnothing) \cup (Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \breve{D}).$$

For the sets Y_2^{α} , Y_1^{α} and Y_0^{α} we consider the following cases:

- 1) $Y_2^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$. Then we have $V(X^*, \alpha) = D$, i.e. $\alpha \in B$.
- 2) $Y_2^{\alpha} = \emptyset$ $Y_1^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$. Then quasinormal representation of a binary relation α has a form $\alpha = (Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \widetilde{D})$, i.e. $\alpha \in B_1$.
- 3) $Y_1^{\alpha} = \varnothing$ $Y_2^{\alpha}, Y_0^{\alpha} \notin \{\varnothing\}$. Then quasinormal representation of a binary relation α has a form $\alpha = (Y_2^{\alpha} \times \varnothing) \cup (Y_0^{\alpha} \times \overline{D})$. So, $\alpha \in B_2$. From the statement α) of the Lemma 2.4 follows that the elements of the set B_2 are generating by elements of the set B.
- **4)** $Y_0^{\alpha} = \emptyset$ $Y_2^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$. Then quasinormal representation of a binary relation α has a form $\alpha = (Y_2^{\alpha} \times \emptyset) \cup (Y_1^{\alpha} \times Z_1)$. So, $\alpha \in B_3$. From the statement α) of the Lemma 2.4 follows, that the elements of the set B_3 is generating by elements of the set B.
- 5) If $Y_2^{\alpha} = Y_0^{\alpha} = \emptyset$, $Y_1^{\alpha} \neq \emptyset$, or $Y_2^{\alpha} = Y_1^{\alpha} = \emptyset$, $Y_0^{\alpha} \neq \emptyset$. Then quasinormal representation of a binary relation α has a form $\alpha = X \times Z_1$, or $\alpha = X \times \breve{D}$.

Let quasinormal representations of a binary relations δ and β_0 has a form $\delta = (Y_1^\delta \times Z_1) \cup (Y_0^\delta \times \overline{D})$ and $\beta_0 = (\overline{D} \times Z_1) \cup ((X \setminus \overline{D}) \times \overline{D})$ where $Y_1^\delta, Y_0^\delta \notin \{\varnothing\}$, i.e. $\delta, \beta_0 \in B_1$ and $Y_1^\delta \cup Y_0^\delta = X$ since $X \setminus \overline{D} \neq \varnothing$ (by assumption we have $|X \setminus \overline{D}| \ge 1$). So, the following equalities are true:

$$\delta \circ \beta_0 = \left(\left(Y_1^{\delta} \times Z_1 \beta_0 \right) \cup \left(Y_0^{\delta} \times \overline{D} \beta_0 \right) \right) = \\ = \left(Y_1^{\delta} \times Z_1 \right) \cup \left(Y_0^{\delta} \times Z_1 \right) = X \times Z_1 = \alpha.$$

Now, let $\beta_1 = ((X \setminus Z_1) \times Z_1) \cup (Z_1 \times \overline{D})$, then $\beta_1 \in B_1$ since $Z_1 \neq \emptyset$ and $X \setminus Z_1 \neq \emptyset$ by definition of the semi lattice D. So, the following equalities are hold:

$$\delta \circ \beta_{1} = \left(\left(Y_{1}^{\delta} \times Z_{1} \beta_{1} \right) \cup \left(Y_{0}^{\delta} \times \overline{D} \beta_{1} \right) \right) =$$

$$= \left(Y_{1}^{\delta} \times \overline{D} \right) \cup \left(Y_{0}^{\delta} \times \overline{D} \right) = X \times \overline{D} = \alpha.$$

Therefore, the elements $\alpha = X \times Z_1$ and $\alpha = X \times \overline{D}$ are generating by elements of the set B_1 .

6) $Y_1^{\alpha} = Y_0^{\alpha} = \emptyset$, then $Y_2^{\alpha} = X$ since the representation of a binary relation α is quasinirmal. Of this we have, that $\alpha = \emptyset$.

Now let $\delta = (Y_2^{\delta} \times \varnothing) \cup (Y_1^{\delta} \times Z_1) \cup (Y_0^{\delta} \times \overline{D})$ is any element of the set B (by preposition the inequality $|X| \ge 3$ is true). Further, by assumption we have, that $|X \setminus \overline{D}| \ge 1$. In this case, for the $\beta_2 = (\overline{D} \times \varnothing) \cup ((X \setminus \overline{D}) \times \overline{D})$ we

International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 5, Issue 6, November 2016

have $\beta_2 \in B_2$ and by statement a) of the lemma 2.4 binary relation β_2 is generating by elements of the set B and

$$\delta \circ \beta_{2} = (Y_{2}^{\delta} \times \varnothing) \cup (Y_{1}^{\delta} \times Z_{1}\beta_{2}) \cup (Y_{0}^{\delta} \times \overline{D}\beta_{2}) = (Y_{2}^{\delta} \times \varnothing) \cup (Y_{1}^{\delta} \times \varnothing) \cup (Y_{0}^{\delta} \times \varnothing) = X \times \varnothing = \varnothing.$$

So, B'_1 is generating set for the semi group $B_X(D)$.

By preposition $|X \setminus \overline{D}| \ge 1$ and we proved that the set B'_1 is irreducible.

Let $\alpha \in B'_1$ and for the element α consider the following cases:

7) If $\alpha \in B$, then $\alpha \neq \sigma \circ \tau$ for all $\sigma, \tau \in B_X(D) \setminus \{\alpha\}$ since by statement d) of the Lemma 2.1 follows that B is a set external elements for the semi group $B_X(D)$. So, $\alpha \neq \sigma \circ \tau$ for all $\sigma, \tau \in B'_1 \setminus \{\alpha\}$ since $B'_1 \setminus \{\alpha\} \subseteq B_X(D) \setminus \{\alpha\}$.

Thus, we have that $\alpha \notin B$.

- **8)** If $\alpha \in B_1$, then by definition of a set B_1 the quasinormal representation of a binary relation α has a form $\alpha = (Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \overline{D})$, where $Y_1^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$. Further, let $\alpha = \delta \circ \beta$ for some $\delta, \beta \in B_1' \setminus \{\alpha\}$ and for the element δ consider the following cases:
- a') $\delta \in B \setminus \{\alpha\}$ and $\beta \in B'_1 \setminus \{\alpha\}$. Then by definition of a set B the quasinormal representation of a binary relation δ has a form $\delta = (Y_2^{\delta} \times \emptyset) \cup (Y_1^{\delta} \times Z_1) \cup (Y_0^{\delta} \times \overline{D})$, where $Y_2^{\delta}, Y_1^{\delta}, Y_0^{\delta} \notin \{\emptyset\}$ since $V(X^*, \delta) = D$ and

$$(Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \breve{D}) = \alpha = \delta \circ \beta = (Y_2^{\delta} \times \varnothing) \cup (Y_1^{\delta} \times Z_1\beta) \cup (Y_0^{\delta} \times \breve{D}\beta).$$

But last equality is impossible since $Y_2^{\alpha} \notin \{\emptyset\}$.

So, we have that $\delta \notin B \setminus \{\alpha\}$.

b') If $\delta \in B_1 \setminus \{\alpha\}$ and $\beta \in B_1' \setminus \{\alpha\}$. Then by definition of a set B_1 the quasinormal representation of a binary relation δ has a form $\delta = (Y_1^{\delta} \times Z_1) \cup (Y_0^{\delta} \times \overline{D})$, where $Y_1^{\delta}, Y_0^{\delta} \notin \{\emptyset\}$ and

$$\left(Y_1^{\alpha} \times Z_1\right) \cup \left(Y_0^{\alpha} \times \overline{D}\right) = \alpha = \delta \circ \beta = \left(Y_1^{\delta} \times Z_1 \beta\right) \cup \left(Y_0^{\delta} \times \overline{D} \beta\right).$$

Last equalities are possible only if $Z_1\beta = Z_1$, $\breve{D}\beta = \breve{D}$ since $Z_1 \subset \breve{D}$. Of this we obtain, that

$$\alpha = (Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \breve{D}) = (Y_1^{\delta} \times Z_1) \cup (Y_0^{\delta} \times \breve{D}) = \delta.$$

But the equality $\alpha = \delta$ contradict the condition $\delta \in B_1 \setminus \{\alpha\}$.

Thus, we have that $\delta \notin B_1 \setminus \{\alpha\}$.

So, from the cases a' and b' follows that $\alpha \notin B_1$.

Therefore, $\alpha \neq \delta \circ \beta$ for any $\delta, \beta \in B'_1 \setminus \{\alpha\}$, i.e. the set $B'_1 = B \cup B_1$ is irreducible generating set for the semigroup $B_X(D)$.

Lemma 2.5 is proved.

Lemma 2.6. Let $|X| \ge 3$, $D = \{\emptyset, Z_1, \overline{D}\} \in \Sigma_1(X,3)$ and

$$B = \left\{\alpha \in B_{X}\left(D\right) \mid V\left(X^{*},\alpha\right) = D\right\}, \ B_{1} = \left\{\alpha \in B_{X}\left(D\right) \mid V\left(X^{*},\alpha\right) = \left\{Z_{1},\widecheck{D}\right\}\right\},\$$
$$\gamma_{0} = \left(Z_{1} \times \varnothing\right) \cup \left(\left(X \setminus Z_{1}\right) \times Z_{1}\right).$$

If X = D, then the set $B_2' = B \cup B_1 \cup \{\gamma_0\}$ is irreducible generating set for the semigroup $B_X(D)$.

Proof. Let $|X| \ge 3$, X = D. First we proved that every element of the semigroup $B_X(D)$ is generating by elements of the set $B_2' = B \cup B_1 \cup \{\gamma_0\}$. Indeed, let α be any element of the semigroup $B_X(D)$. Then quasinormal representation of a binary relation α has a form

International Journal of Engineering Science and Innovative Technology (IJESIT)

Volume 5, Issue 6, November 2016

$$\alpha = (Y_2^{\alpha} \times \emptyset) \cup (Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \overline{D}).$$

For a sets Y_2^{α} , Y_1^{α} and Y_0^{α} we consider the following cases.

- 1) $Y_2^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$. Then we have $V(X^*, \alpha) = D$, i.e. $\alpha \in B$;
- 2) $Y_2^{\alpha} = \emptyset$ $Y_1^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$. Then quasinormal representation of a binary relation α has a form $\alpha = (Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \overline{D})$, i.e. $\alpha \in B_1$;
- 3) $Y_1^{\alpha} = \varnothing$ $Y_2^{\alpha}, Y_0^{\alpha} \notin \{\varnothing\}$. Then quasinormal representation of a binary relation α has a form $\alpha = (Y_2^{\alpha} \times \varnothing) \cup (Y_0^{\alpha} \times \breve{D}) \in B_2$ and by statement c) of the Lemma 2.4 we have that the elements of the set B_2 are generating of elements of the set $B_1 \cup \{\gamma_0\}$.
- **4)** $Y_0^{\alpha} = \emptyset$ $Y_2^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$. Then quasinormal representation of a binary relation α has a form $\alpha = (Y_2^{\alpha} \times \emptyset) \cup (Y_1^{\alpha} \times Z_1) \in B_3$. Then by statement b) of the lemma 2.4 follows that elements of the set B_3 are generating by elements of the set $B \cup B_1 \cup \{\gamma_0\}$;
- **5**) If $Y_2^{\alpha} = Y_0^{\alpha} = \emptyset$, $Y_1^{\alpha} \neq \emptyset$ or $Y_2^{\alpha} = Y_1^{\alpha} = \emptyset$, $Y_0^{\alpha} \neq \emptyset$. Then quasinormal representation of a binary relation α has a form $\alpha = X \times Z_1$, or $\alpha = X \times \overline{D}$.

If $\delta_0 = ((X \setminus Z_1) \times Z_1) \cup (Z_1 \times \overline{D})$ and $\delta_1 = (Z_1 \times Z_1) \cup ((X \setminus Z_1) \times \overline{D})$, then $\delta_0, \delta_1 \in B_1$ since $|Z_1| \ge 1$ and $|X \setminus Z_1| \ge 1$ by definition of the semilattice D $(\varnothing \subset Z_1 \subset \overline{D})$ and

$$\begin{split} \delta_0 \circ \gamma_0 &= \left(\left(X \setminus Z_1 \right) \times \varnothing \right) \cup \left(Z_1 \times Z_1 \right) = \gamma_1 \\ \delta_1 \circ \gamma_1 &= \left(Z_1 \times Z_1 \gamma_1 \right) \cup \left(\left(X \setminus Z_1 \right) \times \breve{D} \gamma_1 \right) = \\ &= \left(Z_1 \times Z_1 \right) \cup \left(\left(X \setminus Z_1 \right) \times Z_1 \right) = X \times Z_1 = \alpha, \\ \delta_0 \circ \delta_0 &= \left(\left(X \setminus Z_1 \right) \times Z_1 \delta_0 \right) \cup \left(Z_1 \times \breve{D} \delta_0 \right) = \\ &= \left(\left(X \setminus Z_1 \right) \times \breve{D} \right) \cup \left(Z_1 \times \breve{D} \right) = X \times \breve{D} = \alpha. \end{split}$$

So, the elements $\alpha = X \times Z_1$ and $\alpha = X \times \overline{D}$ are generating by elements of the set $B_1 \cup \{\gamma_0\}$.

6) $Y_1^{\alpha} = Y_0^{\alpha} = \emptyset$. Then $Y_2^{\alpha} = X$ since the representation of the binary relation α is quasinormal. Then $\alpha = \emptyset$ and

$$\begin{split} &\gamma_0 \circ \gamma_0 = \left(\left(Z_1 \times \varnothing \right) \cup \left(\left(X \setminus Z_1 \right) \times Z_1 \right) \right) \circ \gamma_0 = \left(Z_1 \times \varnothing \gamma_0 \right) \cup \left(\left(X \setminus Z_1 \right) \times Z_1 \gamma_0 \right) = \\ &= \left(Z_1 \times \varnothing \right) \cup \left(\left(X \setminus Z_1 \right) \times \varnothing \right) = X \times \varnothing = \varnothing. \end{split}$$

Thus, we have that the binary relation $\alpha = \emptyset$ is generating by elements of the set B'_2 .

So, $B_2' = B \cup B_1 \cup \{\gamma_0\}$ is generating set for the semigroup $B_X(D)$.

Now, let $|X| \ge 3$, $X = \overline{D}$ and we proved that the set $B_2' = B \cup B_1 \cup \{\gamma_1\}$ is irreducible. For the element $\alpha \in B_2'$ consider the following cases.

7) If $\alpha \in B$, then $\alpha \neq \sigma \circ \tau$ for all $\sigma, \tau \in B_X(D) \setminus \{\alpha\}$ since by statement d) of the Lemma 2.1 follows that B is a set external elements for the semigroup $B_X(D)$. So, $\alpha \neq \sigma \circ \tau$ for all $\sigma, \tau \in B'_2 \setminus \{\alpha\}$ since $B'_2 \setminus \{\alpha\} \subseteq B_X(D) \setminus \{\alpha\}$.

Thus we have $\alpha \notin B$.

8) Let $\alpha \in B_1$, then by definition of a set B_1 the quasinormal representation of a binary relation α has a form $\alpha = (Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \breve{D})$, where $Y_1^{\alpha}, Y_0^{\alpha} \notin \{\varnothing\}$. Further, let $\alpha = \delta \circ \beta$ for some $\delta, \beta \in B_2' \setminus \{\alpha\}$.

For the element δ consider the following cases:

a') If $\delta \in B \setminus \{\alpha\}$ and $\beta \in B_2' \setminus \{\alpha\}$. Then by definition of a set B the quasinormal representation of a binary relation δ has a form $\delta = (Y_2^{\delta} \times \emptyset) \cup (Y_1^{\delta} \times Z_1) \cup (Y_0^{\delta} \times \overline{D})$, where $Y_2^{\delta}, Y_1^{\delta}, Y_0^{\delta} \notin \{\emptyset\}$ since $V(X^*, \delta) = D$ and

ISSN: 2319-5967

ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT)

Volume 5, Issue 6, November 2016

$$(Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \breve{D}) = \alpha = \delta \circ \beta = (Y_2^{\delta} \times \varnothing) \cup (Y_1^{\delta} \times Z_1\beta) \cup (Y_0^{\delta} \times \breve{D}\beta).$$

But last equality is impossible since $Y_2^{\delta} \notin \{\emptyset\}$.

So, we have that $\delta \notin B \setminus \{\alpha\}$.

b') If $\delta \in B_1 \setminus \{\alpha\}$ and $\beta \in B_2' \setminus \{\alpha\}$. Then by definition of a set B_1 the quasinormal representation of a binary relation δ has a form $\delta = (Y_1^{\delta} \times Z_1) \cup (Y_0^{\delta} \times \overline{D})$, where $Y_1^{\delta}, Y_0^{\delta} \notin \{\emptyset\}$ and

$$(Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \breve{D}) = \alpha = \delta \circ \beta = (Y_1^{\delta} \times Z_1 \beta) \cup (Y_0^{\delta} \times \breve{D}\beta).$$

Last equality is possible only if $Z_1 = Z_1 \beta$ and $\breve{D} = \breve{D} \beta$ since $Z_1 \subset \breve{D}$, i.e.

$$\alpha = (Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \widetilde{D}) = (Y_1^{\delta} \times Z_1) \cup (Y_0^{\delta} \times \widetilde{D}) = \delta.$$

We have $\alpha = \delta$, which contradict the condition $\delta \in B_1 \setminus \{\alpha\}$.

Thus, we have that $\delta \notin B_1 \setminus \{\alpha\}$.

$$c'\big) \ \ \text{If} \ \ \delta = \gamma_0 \ \ \text{and} \quad \beta \in B_2' \setminus \left\{\alpha\right\}, \ \text{then} \ \ \delta = \left(Z_1 \times \varnothing\right) \cup \left(\left(X \setminus Z_1\right) \times Z_1\right) \ \ \text{and} \ \ \delta \neq \alpha \ , \ \text{i.e.}$$

$$(Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \widecheck{D}) = \alpha = \delta \circ \beta = (Z_1 \times \varnothing) \cup ((X \setminus Z_1) \times Z_1 \beta).$$

But last equalities is impossible since $Y_1^{\alpha}, Z_1 \notin \{\emptyset\}$.

Thus, we have that $\delta \neq \gamma_0$.

Of the cases a'), b') and c') follows that $\alpha \notin B_1$.

9)
$$\alpha = \gamma_0 = (Z_1 \times \emptyset) \cup ((X \setminus Z_1) \times Z_1)$$
. Further, let $\alpha = \delta \circ \beta$ for some $\delta, \beta \in B_2' \setminus \{\gamma_0\}$.

For the element δ consider the following cases:

a') If $\delta \in B \setminus \{\gamma_0\}$ and $\beta \in B_2' \setminus \{\gamma_0\}$. Then by definition of a set B the quasinormal representation of a binary relation δ has a form $\delta = (Y_2^{\delta} \times \varnothing) \cup (Y_1^{\delta} \times Z_1) \cup (Y_0^{\delta} \times \tilde{D})$, where $Y_2^{\delta}, Y_1^{\delta}, Y_0^{\delta} \notin \{\varnothing\}$ since $V(X^*, \delta) = D$ and

$$(Z_1 \times \varnothing) \cup ((X \setminus Z_1) \times Z_1) = \alpha = \delta \circ \beta = (Y_2^{\delta} \times \varnothing) \cup (Y_1^{\delta} \times Z_1 \beta) \cup (Y_0^{\delta} \times \widecheck{D}\beta).$$

Last equalities is possible only if $Z_1\beta = \emptyset$, $Z_1 = D\beta$ or $Z_1 = Z_1\beta = D\beta$.

If $Z_1\beta = \emptyset$, $Z_1 = \check{D}\beta$, then by statement a) of the Lemma 2.2 follows that $|X \setminus \check{D}| \ge 1$. But, the inequality $|X \setminus \check{D}| \ge 1$ contradict the equality $X = \check{D}$.

If $Z_1 = Z_1 \beta = \breve{D}\beta$, then by statement b) of the Lemma 2.2 follows that $|X \setminus \breve{D}| \ge 1$. But, the inequality $|X \setminus \breve{D}| \ge 1$ contradict the equality $X = \breve{D}$.

Thus, in case a') we have that $\delta \notin B \setminus \{\gamma_0\}$.

b') If $\delta \in B_1 \setminus \{\gamma_0\}$ and $\beta \in B'_2 \setminus \{\gamma_0\}$. Then by definition of a set B_1 the quasinormal representation of a binary relation δ has a form $\delta = (Y_1^{\delta} \times Z_1) \cup (Y_0^{\delta} \times \breve{D})$, where $Y_1^{\delta}, Y_0^{\delta} \notin \{\varnothing\}$ and

$$(Z_1 \times \varnothing) \cup ((X \setminus Z_1) \times Z_1) = \alpha = \delta \circ \beta = (Y_1^{\delta} \times Z_1 \beta) \cup (Y_0^{\delta} \times \overline{D}\beta).$$

Last equality is possible only if $Z_1\beta = \emptyset$ and $\overline{D}\beta = Z_1$ since $Z_1 \subset \overline{D}$.

If $Z_1\beta = \emptyset$ and $\bar{D}\beta = Z_1$ for some $\beta \in B$, then by statement a) of the Lemma 2.2 we have $|X \setminus \bar{D}| \ge 1$. But last inequality contradict the condition $X = \bar{D}$.

Thus we have that $\delta \notin B_1 \setminus \{\gamma_0\}$.

Of the cases a'), b') follows that $\alpha \neq \gamma_0$.

International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 5, Issue 6, November 2016

Therefore, $\alpha \neq \delta \circ \beta$ for any $\delta, \beta \in B_2' \setminus \{\alpha\}$, i.e. the set $B_2' = B \cup B_1 \cup \{\gamma_0\}$ is irreducible generating set for the semigroup $B_X(D)$.

Lemma 2.6 is proved.

Lemma 2.7. Let |X| = 2, $D = \{\emptyset, Z_1, \overline{D}\} \in \Sigma_1(X,3)$. Then $B = \emptyset$ and the set $B_3' = B_1 \cup \{\gamma_0\}$ is irreducible generating set for the semigroup $B_X(D)$.

Proof. Let X = D and |X| = 2. Then $B_X(D) = \{\gamma_0, \alpha_1, \alpha_2, ..., \alpha_8\}$, where

$$\begin{split} &\gamma_0 = \left(Z_1 \times \varnothing\right) \cup \left(\left(X \setminus Z_1\right) \times Z_1\right) = \left(X \setminus Z_1\right) \times Z_1, \\ &\alpha_1 = \left(Z_1 \times Z_1\right) \cup \left(\left(X \setminus Z_1\right) \times \breve{D}\right), \ \alpha_2 = \left(\left(X \setminus Z_1\right) \times Z_1\right) \cup \left(Z_1 \times \breve{D}\right), \\ &\alpha_3 = X \times \varnothing = \varnothing, \ \alpha_4 = \left(\left(X \setminus Z_1\right) \times \varnothing\right) \cup \left(Z_1 \times Z_1\right) = Z_1 \times Z_1, \\ &\alpha_5 = \left(Z_1 \times \varnothing\right) \cup \left(\left(X \setminus Z_1\right) \times \breve{D}\right) = \left(X \setminus Z_1\right) \times \breve{D}, \\ &\alpha_6 = \left(\left(X \setminus Z_1\right) \times \varnothing\right) \cup \left(Z_1 \times \breve{D}\right) = Z_1 \times \breve{D}, \ \alpha_7 = X \times Z_1, \ \alpha_8 = X \times \breve{D}. \end{split}$$

In this case we have: $B = \emptyset$, $X = \overline{D}$, $B_1 = \{\alpha_1, \alpha_2\}$ and $B_3' = B_1 \cup \{\gamma_0\}$ is generating set for the semigroup $B_X(D)$. Indeed:

0	γ_0	$\alpha_{_{1}}$	α_2
γ_0	α_3	γ_0	$\alpha_{\scriptscriptstyle 5}$
$\alpha_{_{1}}$	γ_0	$\alpha_{_{1}}$	$\alpha_{_8}$
α_2	$\alpha_{\scriptscriptstyle 4}$	$\alpha_{\scriptscriptstyle 2}$	$\alpha_{_{8}}$

where $\alpha_2 \circ (\gamma_0 \circ \alpha_2) = \alpha_2 \circ \alpha_5 = \alpha_6$ and $(\alpha_1 \circ \alpha_2) \circ \gamma_0 = \alpha_8 \circ \gamma_0 = \alpha_7$. Of the last conditions and from the Lemma 2.6 we obtain that B_3' is irreducible generating set for the semigroup $B_X(D)$.

Theorem 2.2. Let $|X| \ge 3$, $D = \{\emptyset, Z_1, \widecheck{D}\} \in \Sigma_1(X,3)$. If

$$B = \left\{ \alpha \in B_X \left(D \right) | V \left(X^*, \alpha \right) = D \right\}, \ B_1 = \left\{ \alpha \in B_X \left(D \right) | V \left(X^*, \alpha \right) = \left\{ Z_1, \widecheck{D} \right\} \right\},$$
$$\gamma_0 = \left(Z_1 \times \emptyset \right) \cup \left(\left(X \setminus Z_1 \right) \times Z_1 \right).$$

Then the following statements are true:

Lemma 2.7 is proved.

- **a**) if $|X \setminus \overline{D}| \ge 1$. Then the set $B \cup B_1$ is irreducible generating set for the semigroup $B_X(D)$;
- **b**) if X = D, then the set $B \cup B_1 \cup \{\gamma_0\}$ is irreducible generating set for the semigroup $B_X(D)$.
- **c**) if |X| = 2, then the set $B_1 \cup \{\gamma_0\}$ is irreducible generating set for the semigroup $B_X(D)$.

Proof. The statements a), b) and c) immediately follows from the Lemma 2.5, 2.6 and 2.7 respectively.

Theorem 2.3. Let $D = \{\emptyset, Z_1, \check{D}\} \in \Sigma_1(X,3)$. If X is finite a set and |X| = n, then the following statements are true:

a) if $|X \setminus \overline{D}| \ge 1$, then the number $|B \cup B_1|$ of a set $B \cup B_1$ is equal to

$$|B \cup B_1| = 3^n - 2^{n+1} + 1$$
;

b) if $|X| \ge 3$, X = D, $\gamma_0 = (Z_1 \times \emptyset) \cup ((X \setminus Z_1) \times Z_1)$, then the number $|B \cup B_1 \cup \{\gamma_0\}|$ of a set $B \cup B_1 \cup \{\gamma_0\}$ is equal to

$$|B \cup B_1 \cup \{\gamma_1\}| = 3^n - 2^{n+1} + 2;$$

c) if |X| = 2, then then the number $|B_1 \cup {\gamma_1, \gamma_2}|$ of a set $B_1 \cup {\gamma_0}$ is equal to

$$|B_1 \cup \{\gamma_0\}| = 3.$$

Proof. Let
$$B = \{ \alpha \in B_X(D) | V(X^*, \alpha) = D \}$$
 and

ISSN: 2319-5967

ISO 9001:2008 Certified

International Journal of Engineering Science and Innovative Technology (IJESIT)

Volume 5, Issue 6, November 2016

$$\varphi_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \ \varphi_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \ \varphi_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix},
\varphi_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \ \varphi_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \ \varphi_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}.$$

If $\alpha \in B$, then quasinormal representation of a binary relation α has a form $\alpha = \left(Y_{\varphi_j(1)}^\alpha \times \varnothing\right) \cup \left(Y_{\varphi_j(2)}^\alpha \times Z_1\right) \cup \left(Y_{\varphi_j(3)}^\alpha \times \widecheck{D}\right)$, where j = 1, 2, ..., 5, 6 and a system of subsets $Y_{\varphi_j(1)}^\alpha, Y_{\varphi_j(2)}^\alpha, Y_{\varphi_j(3)}^\alpha \notin \{\varnothing\}$ of the set X is partitioning of the set X. Then the number k_n^3 partitioning $Y_{\varphi_j(1)}^\alpha, Y_{\varphi_j(2)}^\alpha, Y_{\varphi_j(3)}^\alpha$ of the set X for fixed $Y_{\varphi_j(1)}^\alpha$ is equal to

$$k_n^3 = \sum_{i=1}^3 \frac{\left(-1\right)^{3+i}}{(i-1)!(3-i)!} \cdot i^{n-1} = \frac{1}{2} \cdot 3^{n-1} - 2^{n-1} + \frac{1}{2}.$$

(see [1], Theorem 1.17.1). Of this obtain that $|B| = 6 \cdot k_n^3 = 3^n - 3 \cdot 2^n + 3$.

If $\alpha \in B_1$, then quasinormal representation of a binary relation α has a form $\alpha = (Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \overline{D})$, where a system $Y_1^{\alpha}, Y_0^{\alpha}$ is partitioning of the set X. By definition of a set B_1 we obtain $B_1 = B_X(D') \setminus \{X \times Z_1, X \times \overline{D}\}$, where $D' = \{Z_1, \overline{D}\}$. So, we have, $|B_1| = |B_X(D')| - 2 = 2^{|X|} - 2 = 2^n - 2$. By definition of a sets B, B_1 and $\{\gamma_0\}$ follows that $B \cap B_1 = B \cap \{\gamma_0\} = B_1 \cap \{\gamma_0\} = \emptyset$. Of this we obtain that:

$$|B \cup B_1| = (3^n - 3 \cdot 2^n + 3) + (2^n - 2) = 3^n - 2^{n+1} + 1$$
,

if $|X \setminus \breve{D}| \ge 1$;

$$|B \cup B_1 \cup \{\gamma_0\}| = (3^n - 2^{n+1} + 1) + 1 = 3^n - 2^{n+1} + 2$$
,

if $|X| \ge 3$, $X = \tilde{D}$;

$$|B_1 \cup \{\gamma_0\}| = 2^{|2|} - 2 + 1 = 3$$
,

if |X| = 2.

Theorem 2.3 is proved.

Example 2.1. Let $X = \{1, 2, 3\}$, $Z_1 = \{1\}$, $\breve{D} = \{1, 2\}$, $D = \{\varnothing, Z_1, \breve{D}\}$ and $|X \setminus \breve{D}| = 1$. Then $B_X(D) = \{\alpha_1, \alpha_2, ..., \alpha_{27}\}$, where

$$\begin{split} &\alpha_1 = (Z_1 \times \varnothing) \cup \left((\bar{D} \setminus Z_1) \times Z_1 \right) \cup \left((X \setminus \bar{D}) \times \bar{D} \right), \\ &\alpha_2 = (Z_1 \times \varnothing) \cup \left((X \setminus \bar{D}) \times Z_1 \right) \cup \left((\bar{D} \setminus Z_1) \times \bar{D} \right), \\ &\alpha_3 = \left((\bar{D} \setminus Z_1) \times \varnothing \right) \cup (Z_1 \times Z_1) \cup \left((X \setminus \bar{D}) \times \bar{D} \right), \\ &\alpha_4 = \left((\bar{D} \setminus Z_1) \times \varnothing \right) \cup \left((X \setminus \bar{D}) \times Z_1 \right) \cup \left(Z_1 \times \bar{D} \right), \\ &\alpha_5 = \left((X \setminus \bar{D}) \times \varnothing \right) \cup \left((\bar{D} \setminus Z_1) \times Z_1 \right) \cup \left(Z_1 \times \bar{D} \right), \\ &\alpha_6 = \left((X \setminus \bar{D}) \times \varnothing \right) \cup \left((\bar{D} \setminus Z_1) \times Z_1 \right) \cup \left((\bar{D} \setminus Z_1) \times \bar{D} \right), \\ &\alpha_7 = (Z_1 \times Z_1) \cup \left(\{2,3\} \times \bar{D} \right), \quad \alpha_8 = \left((\bar{D} \setminus Z_1) \times Z_1 \right) \cup \left(\{1,3\} \times \bar{D} \right), \\ &\alpha_9 = \left((X \setminus \bar{D}) \times Z_1 \right) \cup \left((\bar{D} \setminus \bar{Z}_1) \times \bar{D} \right), \quad \alpha_{12} = \left(\{2,3\} \times Z_1 \right) \cup \left(Z_1 \times \bar{D} \right), \\ &\alpha_{13} = \left(\{1,3\} \times Z_1 \right) \cup \left((\bar{D} \setminus Z_1) \times \bar{D} \right), \quad \alpha_{12} = \left(\{2,3\} \times Z_1 \right) \cup \left(\bar{D} \times Z_1 \right), \\ &\alpha_{13} = (\bar{D} \times \varnothing) \cup \left((X \setminus \bar{D}) \times \bar{D} \right), \quad \alpha_{14} = \left((X \setminus \bar{D}) \times \varnothing) \cup \left(\bar{D} \times Z_1 \right), \\ &\alpha_{15} = (\bar{D} \times \varnothing) \cup \left((X \setminus \bar{D}) \times \bar{D} \right), \quad \alpha_{16} = \left(\{1,3\} \times \varnothing) \cup \left((\bar{D} \setminus Z_1) \times \bar{D} \right), \\ &\alpha_{17} = \left(\{2,3\} \times \varnothing) \cup \left(Z_1 \times \bar{D} \right), \quad \alpha_{18} = \left((\bar{D} \setminus Z_1) \times \varnothing) \cup \left(\{1,3\} \times \bar{D} \right), \\ &\alpha_{21} = \left(\{1,3\} \times \varnothing\right) \cup \left((\bar{D} \setminus Z_1) \times Z_1 \right), \quad \alpha_{22} = \left(Z_1 \times \varnothing\right) \cup \left(\{2,3\} \times Z_1 \right), \\ &\alpha_{23} = \left(\{2,3\} \times \varnothing\right) \cup \left(Z_1 \times Z_1 \right), \quad \alpha_{24} = \left((\bar{D} \setminus Z_1) \times \varnothing\right) \cup \left(\{1,3\} \times Z_1 \right), \\ &\alpha_{25} = \varnothing, \quad \alpha_{26} = \{1,2,3\} \times Z_1, \quad \alpha_{27} = \{1,2,3\} \times \bar{D}. \end{split}$$

International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 5, Issue 6, November 2016

 $B = \{\alpha_1, \alpha_2, ..., \alpha_6\}, B_1 = \{\alpha_7, \alpha_8, ..., \alpha_{12}\} \text{ and } |B \cup B_1| = 12.$

	$\alpha_{_{\mathrm{l}}}$	α_2	α_3	$\alpha_{\scriptscriptstyle 4}$	$\alpha_{\scriptscriptstyle 5}$	$\alpha_{\scriptscriptstyle 6}$	α_7	$\alpha_{_{8}}$	α_9	$\alpha_{_{10}}$	α_{11}	α_{12}
$\alpha_{_{1}}$	α_{13}	$\alpha_{_{15}}$	$\alpha_{\scriptscriptstyle 22}$	$\alpha_{\scriptscriptstyle 20}$	$\alpha_{\scriptscriptstyle 20}$	$\alpha_{_{1}}$	$\alpha_{_{1}}$	$\alpha_{\scriptscriptstyle 20}$	$\alpha_{\scriptscriptstyle 20}$	$\alpha_{\scriptscriptstyle 22}$	$\alpha_{_{\mathrm{l}}}$	$\alpha_{\scriptscriptstyle 20}$
α_2	α_{21}	$\alpha_{_{16}}$	$\alpha_{\scriptscriptstyle 22}$	$\alpha_{\scriptscriptstyle 20}$	$\alpha_{\scriptscriptstyle 20}$	α_2	α_2	$\alpha_{\scriptscriptstyle 20}$	$\alpha_{\scriptscriptstyle 20}$	$\alpha_{\scriptscriptstyle 22}$	α_2	$lpha_{20}$
α_3	α_{13}	$\alpha_{\scriptscriptstyle 15}$	$\alpha_{\scriptscriptstyle 24}$	α_{18}	α_{18}	α_{18}	α_3	α_{18}	α_{18}	$\alpha_{\scriptscriptstyle 24}$	α_3	α_{18}
$lpha_{\scriptscriptstyle 4}$	$\alpha_{\scriptscriptstyle 23}$	$\alpha_{\scriptscriptstyle 17}$	$\alpha_{\scriptscriptstyle 24}$	α_{18}	α_{18}	$\alpha_{\scriptscriptstyle 4}$	$\alpha_{\scriptscriptstyle 4}$	$\alpha_{_{18}}$	$\alpha_{_{18}}$	$\alpha_{\scriptscriptstyle 24}$	$\alpha_{\scriptscriptstyle 4}$	α_{18}
$\alpha_{\scriptscriptstyle 5}$	α_{23}	$lpha_{\scriptscriptstyle 17}$	$\alpha_{_{14}}$	$\alpha_{_{19}}$	$\alpha_{_{19}}$	$\alpha_{\scriptscriptstyle 5}$	$\alpha_{\scriptscriptstyle 5}$	$\alpha_{_{19}}$	$\alpha_{_{19}}$	$lpha_{_{14}}$	$\alpha_{\scriptscriptstyle 5}$	α_{19}
$lpha_{\scriptscriptstyle 6}$	α_{21}	α_{16}	$lpha_{\scriptscriptstyle 14}$	α_{19}	α_{19}	$\alpha_{\scriptscriptstyle 6}$	$\alpha_{\scriptscriptstyle 6}$	α_{19}	α_{19}	$lpha_{\scriptscriptstyle 14}$	$\alpha_{\scriptscriptstyle 6}$	α_{19}
α_7	$\alpha_{\scriptscriptstyle 22}$	$\alpha_{\scriptscriptstyle 20}$	α_{26}	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{\scriptscriptstyle 27}$	α_7	α_7	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{\scriptscriptstyle 27}$	α_7	$lpha_{\scriptscriptstyle 27}$
$lpha_{_{8}}$	$\alpha_{\scriptscriptstyle 24}$	$lpha_{\scriptscriptstyle 24}$	$\alpha_{\scriptscriptstyle 26}$	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{_8}$	$\alpha_{_8}$	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{\scriptscriptstyle 26}$	$\alpha_{_8}$	$lpha_{\scriptscriptstyle 27}$
$lpha_{\scriptscriptstyle 9}$	$lpha_{_{14}}$	$\alpha_{_{19}}$	α_{26}	α_9	$\alpha_{\scriptscriptstyle 27}$	α_9	α_9	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{\scriptscriptstyle 26}$	α_9	$lpha_{\scriptscriptstyle 27}$
$lpha_{10}$	α_{13}	$\alpha_{\scriptscriptstyle 15}$	$\alpha_{\scriptscriptstyle 26}$	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{\scriptscriptstyle 27}$	α_{10}	α_{10}	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{\scriptscriptstyle 26}$	$lpha_{10}$	$lpha_{\scriptscriptstyle 27}$
α_{11}	α_{21}	$\alpha_{_{16}}$	α_{26}	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{\scriptscriptstyle 27}$	α_{11}	α_{11}	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{\scriptscriptstyle 27}$	α_{26}	α_{11}	$lpha_{\scriptscriptstyle 27}$
α_{12}	α_{17}	α_{23}	α_{26}	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{\scriptscriptstyle 27}$	α_{12}	α_{12}	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{\scriptscriptstyle 27}$	α_{26}	α_{12}	$lpha_{\scriptscriptstyle 27}$

In this case we have $\alpha_2 \circ \alpha_3 \circ \alpha_2 = \alpha_{22} \circ \alpha_2 = \alpha_{25}$, i.e. the set $B \cup B_1$ is irreducible generated set for the semi group $B_X(D)$.

Example 2.2. Let $X = \{1, 2, 3\} = \overline{D}$, $Z_1 = \{1, 2\}$, $D = \{\emptyset, Z_1, \overline{D}\}$ $X = \overline{D}$. Then $B_X(D) = \{\alpha_1, \alpha_2, ..., \alpha_{27}\}$, where

$$\begin{array}{l} \alpha_{1} = \left(\{1\} \times \varnothing\right) \cup \left(\{2\} \times Z_{1}\right) \cup \left(\{3\} \times \bar{D}\right), \ \alpha_{2} = \left(\{1\} \times \varnothing\right) \cup \left(\{3\} \times Z_{1}\right) \cup \left(\{2\} \times \bar{D}\right), \\ \alpha_{3} = \left(\{2\} \times \varnothing\right) \cup \left(\{1\} \times Z_{1}\right) \cup \left(\{3\} \times \bar{D}\right), \ \alpha_{4} = \left(\{2\} \times \varnothing\right) \cup \left(\{3\} \times Z_{1}\right) \cup \left(\{1\} \times \bar{D}\right), \\ \alpha_{5} = \left(\{3\} \times \varnothing\right) \cup \left(\{2\} \times Z_{1}\right) \cup \left(\{1\} \times \bar{D}\right), \ \alpha_{6} = \left(\{3\} \times \varnothing\right) \cup \left(\{1\} \times Z_{1}\right) \cup \left(\{2\} \times \bar{D}\right), \\ \alpha_{7} = \left(\{1\} \times Z_{1}\right) \cup \left(\{2,3\} \times \bar{D}\right), \ \alpha_{8} = \left(\{2\} \times Z_{1}\right) \cup \left(\{1,3\} \times \bar{D}\right), \\ \alpha_{9} = \left(\{3\} \times Z_{1}\right) \cup \left(\{2,3\} \times \bar{D}\right), \ \alpha_{10} = \left(Z_{1} \times Z_{1}\right) \cup \left(\{3\} \times \bar{D}\right), \\ \alpha_{11} = \left(\{1,3\} \times Z_{1}\right) \cup \left(\{2\} \times \bar{D}\right), \ \alpha_{12} = \left(\{2,3\} \times Z_{1}\right) \cup \left(\{1\} \times \bar{D}\right), \\ \alpha_{13} = \left(\{3\} \times \varnothing\right) \cup \left(\{3\} \times Z_{1}\right), \ \alpha_{14} = \left(Z_{1} \times \varnothing\right) \cup \left(\{3\} \times \bar{D}\right), \\ \alpha_{15} = \left(Z_{1} \times \varnothing\right) \cup \left(\{3\} \times Z_{1}\right) = \gamma_{0}, \ \alpha_{16} = \left(\{1,3\} \times \varnothing\right) \cup \left(\{2\} \times \bar{D}\right), \\ \alpha_{17} = \left(\{2,3\} \times \varnothing\right) \cup \left(\{1\} \times \bar{D}\right), \ \alpha_{18} = \left(\{2\} \times \varnothing\right) \cup \left(\{1,3\} \times \bar{D}\right), \\ \alpha_{19} = \left(\{3\} \times \varnothing\right) \cup \left(\{2\} \times Z_{1}\right), \ \alpha_{20} = \left(\{1\} \times \varnothing\right) \cup \left(\{2,3\} \times \bar{D}\right), \\ \alpha_{21} = \left(\{1,3\} \times \varnothing\right) \cup \left(\{2\} \times Z_{1}\right), \ \alpha_{22} = \left(\{1\} \times \varnothing\right) \cup \left(\{1,3\} \times Z_{1}\right), \\ \alpha_{23} = \left(\{2,3\} \times \varnothing\right) \cup \left(\{1\} \times Z_{1}\right), \ \alpha_{24} = \left(\{2\} \times \varnothing\right) \cup \left(\{1,3\} \times Z_{1}\right), \\ \alpha_{25} = \varnothing, \ \alpha_{26} = \{1,2,3\} \times Z_{1}, \ \alpha_{27} = \{1,2,3\} \times \bar{D}. \end{array}$$

 $B = \{\alpha_1, \alpha_2, ..., \alpha_6\}, \ B_1 = \{\alpha_7, \alpha_8, ..., \alpha_{12}\}, \gamma_0 = \alpha_{15} \text{ and } \left|B \cup B_1 \cup \{\gamma_0\}\right| = 13.$

0	$\alpha_{_1}$	$\alpha_{\scriptscriptstyle 2}$	α_3	$lpha_{\scriptscriptstyle 4}$	$\alpha_{\scriptscriptstyle 5}$	$\alpha_{\scriptscriptstyle 6}$	α_7	$\alpha_{_8}$	α_9	$lpha_{10}$	α_{11}	α_{12}	γ_0
$\alpha_{_{1}}$	$\alpha_{_{1}}$	$\alpha_{\scriptscriptstyle 20}$	$\alpha_{_{1}}$	$lpha_{\scriptscriptstyle 20}$	$\alpha_{\scriptscriptstyle 20}$	$lpha_{\scriptscriptstyle 20}$	$lpha_{20}$	$lpha_{\scriptscriptstyle 20}$	$lpha_{\scriptscriptstyle 20}$	$\alpha_{_{1}}$	$lpha_{\scriptscriptstyle 20}$	$lpha_{20}$	γ_0
α_2	α_2	$\alpha_{\scriptscriptstyle 20}$	α_2	$lpha_{20}$	$lpha_{20}$	$\alpha_{\scriptscriptstyle 20}$	$lpha_{20}$	α_{21}					
α_3	α_3	α_{18}	α_3	$\alpha_{\scriptscriptstyle 4}$	α_{17}	$\alpha_{_{18}}$	α_{18}	α_{18}	α_{18}	α_3	$\alpha_{\scriptscriptstyle 4}$	$\alpha_{\scriptscriptstyle 4}$	γ_0
$\alpha_{_4}$	$\alpha_{_4}$	$\alpha_{_{18}}$	$\alpha_{_4}$	$lpha_{\scriptscriptstyle 4}$	$\alpha_{\scriptscriptstyle 4}$	$\alpha_{_{18}}$	α_{18}	$\alpha_{_{18}}$	α_{18}	$lpha_{\scriptscriptstyle 4}$	$\alpha_{_{18}}$	α_{18}	α_{23}
$\alpha_{\scriptscriptstyle 5}$	$\alpha_{\scriptscriptstyle 5}$	α_{19}	$\alpha_{\scriptscriptstyle 5}$	α_{17}	$\alpha_{\scriptscriptstyle 5}$	$\alpha_{_{19}}$	α_{19}	α_{19}	α_{19}	$\alpha_{\scriptscriptstyle 5}$	$\alpha_{_{19}}$	α_{19}	α_{23}
$\alpha_{\scriptscriptstyle 6}$	$\alpha_{\scriptscriptstyle 6}$	α_{19}	$\alpha_{\scriptscriptstyle 6}$	α_{19}	α_{19}	α_{19}	α_{19}	α_{19}	α_{19}	$\alpha_{\scriptscriptstyle 6}$	α_{19}	$\alpha_{\scriptscriptstyle 5}$	α_{21}
α_7	α_7	α_9	α_7	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{\scriptscriptstyle 27}$	α_7	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{\scriptscriptstyle 27}$	α_7	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{\scriptscriptstyle 27}$	$\alpha_{\scriptscriptstyle 22}$

International Journal of Engineering Science and Innovative Technology (IJESIT)

Volume 5, Issue 6, November 2016

											α_{7}		
											$lpha_{\scriptscriptstyle 27}$		
											$lpha_{\scriptscriptstyle 27}$		
											$lpha_{\scriptscriptstyle 27}$		
											$lpha_{\scriptscriptstyle 27}$		
γ_0	γ_0	$\alpha_{_{14}}$	γ_0	$\alpha_{_{14}}$	$\alpha_{_{14}}$	$\alpha_{\scriptscriptstyle 25}$							

In this case we have: $\alpha_{11} \circ \alpha_{15} \circ \alpha_9 = \alpha_{11} \circ \alpha_{14} = \alpha_{16}$ and $\alpha_3 \circ \alpha_9 \circ \alpha_{15} = \alpha_{18} \circ \alpha_{15} = \alpha_{24}$, i.e. the set $B \cup B_1 \cup \{\gamma_0\}$ is irreducible generated set for the semi group $B_X(D)$.

REFERENCES

- [1] Yasha Diasamidze, Shota Makharadze. Complete semigroups of binary relations. Turkey, Kriter, 2013, 1-519.
- [2] Yasha Diasamidze, Neşet Aydin, Ali Erdoğan. Generating Set of the Complete Semigroups of Binary Relations. Applied Mathematics, 2016, 7, 98-107.
- [3] Yasha Diasamidze, Shota Makharadze. Complete semigroups of binary relations defined by elementary and nodal X semilattices of unions. Journal of Mathematical Sciences, 111, no.1, 2002, Plenum Publ. Corp., New York, 3171-3226.
- [4] Yasha Diasamidze, Temuri Sirabidze. Complete semigroups of binary relations defined by three-element X chains. Journal of Mathematical Sciences, 117, no. 4, 2003, Plenum Publ. Corp., New York, 2003, 4320 4350.
- [5] Omar Givradze. Irreducible Generating Sets of Complete Semigroups of Unions $B_X(D)$ Defined by Semilattices of Class $\Sigma_2(X,4)$. Journal of Mathematical Sciences, 186, no. 5, 2012, 745-750.
- [6] Omar Givradze. Irreducible Generating sets of Complete Semigroups of Unions. Journal of Mathematical Sciences, 197, no.6, 2014, 755-760.
- [7] Aleko bakuridze, Yasha Diasamidze, Omar Givradze. Generate Sets of the Complete Semigroups Binary Relations Defined by Semilattices of the Class $\Sigma_1(X,2)$. (to appear).