GENERATED SETS OF THE COMPLETE SEMIGROUP BINARI RELATIONS DEFINED BY SEMILATTICES OF THE
 CLASS $\varepsilon_{i,(x, 3)}$

Yasha Diasamidze ${ }^{1}$ Omar Givradze ${ }^{2}$ Alexander Bakuridze ${ }^{3}$
Faculty of Physics, Mathematics and Computer Sciences, Department of Mathematics, Shota Rustaveli Batumi State University, 35 Ninoshvili St., Batumi 6010,Georgia

Abstract: In this article, we study generated sets of the complete semigroups defined by X - semilattices unions of the class $\Sigma_{1}(X, 3)$.

Key words: Semigroup, semi lattice, binary relation.

I. INTRODUCTION

1.1. Let X be an arbitrary nonempty set, D is an X - semi lattice of unions which closed with respect to the set-theoretic union of elements from D, f be an arbitrary mapping of the set X in the set D. To each mapping f we put into correspondence a binary relation α_{f} on the set X that satisfies the condition

$$
\alpha_{f}=\bigcup_{x \in X}(\{x\} \times f(x)) .
$$

The set of all such $\alpha_{f}(f: X \rightarrow D)$ is denoted by $B_{X}(D)$. It is easy to prove that $B_{X}(D)$ is a semi group with respect to the operation of multiplication of binary relations, which is called a complete semi group of binary relations defined by an X-semi lattice of unions D.
We denote by \varnothing an empty binary relation or an empty subset of the set X. The condition $(x, y) \in \alpha$ will be written in the form $x \alpha y$. Further, let $x, y \in X, Y \subseteq X, \alpha \in B_{X}(D), \quad \breve{D}=\bigcup_{Y \in D} Y$ and $T \in D$. We denote by the symbols $y \alpha, Y \alpha, V(D, \alpha), X^{*}$ and $V\left(X^{*}, \alpha\right)$ the following sets:

$$
\begin{aligned}
& y \alpha=\{x \in X \mid y \alpha x\}, Y \alpha=\bigcup_{y \in Y} y \alpha, V(D, \alpha)=\{Y \alpha \mid Y \in D\}, \\
& X^{*}=\{Y \mid \varnothing \neq Y \subseteq X\}, V\left(X^{*}, \alpha\right)=\{Y \alpha \mid \varnothing \neq Y \subseteq X\}, \\
& D_{T}=\{Z \in D \mid T \subseteq Z\} . Y_{T}^{\alpha}=\{y \in X \mid y \alpha=T\}
\end{aligned}
$$

It is well know the following statement:
Theorem 1.1. Let $D=\left\{\breve{D}, Z_{1}, Z_{2}, \ldots, Z_{m-1}\right\}$ be some finite X-semi lattice of unions and $C(D)=\left\{P_{0}, P_{1}, P_{2}, \ldots, P_{m-1}\right\}$ be the family of sets of pair wise nonintersecting subsets of the set X (the set \varnothing can be repeat several time). If φ is a mapping of the semi lattice D on the family of sets $C(D)$ which satisfies the condition

$$
\varphi=\left(\begin{array}{lllll}
\breve{D} & Z_{1} & Z_{2} & \ldots & Z_{m-1} \\
P_{0} & P_{1} & P_{2} & \ldots & P_{m-1}
\end{array}\right)
$$

and $\hat{D}_{Z}=D \backslash D_{Z}$, then the following equalities are valid:

$$
\begin{align*}
& \breve{D}=P_{0} \cup P_{1} \cup P_{2} \cup \ldots \cup P_{m-1}, \\
& Z_{i}=P_{0} \cup \bigcup_{T \in \bar{D}_{\mathrm{Z}_{i}}} \varphi(T) . \tag{1.1}
\end{align*}
$$

In the sequel these equalities will be called formal.

ISSN: 2319-5967

ISO 9001:2008 Certified

International Journal of Engineering Science and Innovative Technology (IJESIT)

Volume 5, Issue 6, November 2016
It is proved that if the elements of the semi lattice D are represented in the form (1.1), then among the parameters $P_{i}(0<i \leq m-1)$ there exist such parameters that cannot be empty sets for D. Such sets P_{i} are called basis sources, whereas sets $P_{j}(0 \leq j \leq m-1)$ which can be empty sets too are called completeness sources.
It is proved that under the mapping φ the number of covering elements of the pre-image of a basis source is always equal to one, while under the mapping φ the number of covering elements of the pre-image of a completeness source either does not exist or is always greater than one (see [1], chapter 11).
Let $P_{0}, P_{1}, P_{2}, \ldots, P_{m-1}$ be parameters in the formal equalities and β be any binary relation of the semi group $B_{X}(D)$ and

$$
\begin{equation*}
\bar{\beta}=\bigcup_{i=0}^{m-1}\left(P_{i} \times \bigcup_{t \in P_{i}} t \beta\right) \cup \bigcup_{t^{\prime} \in X \backslash \bar{D}}\left(\left\{t^{\prime}\right\} \times \bar{\beta}_{2}\left(t^{\prime}\right)\right), \tag{1.2}
\end{equation*}
$$

where $\bar{\beta}_{2}$ is any mapping of the set $X \backslash \bar{D}$ in the set D. Then the representation of the binary relation β of the form $\bar{\beta}$ will be called subquasinormal.
If $\bar{\beta}$ are the subquasinormal representations of the binary relation β, then for the binary relations $\bar{\beta}$ the following statements are true:
a) $\bar{\beta} \in B_{X}(D)$;
b) $\bigcup_{i=0}^{m-1}\left(P_{i} \times \bigcup_{t \in P_{i}} t \beta\right) \subseteq \beta$ and $\beta \subseteq \bar{\beta}$ for some mapping $\bar{\beta}_{2}$ of the set $X \backslash \breve{D}$ in the set D.
c) the subquasinormal representation of the binary relation β is quasinormal;
d) if $\bar{\beta}_{1}=\left(\begin{array}{rrrr}P_{0} & P_{1} & \ldots & P_{m-1} \\ P_{0} \bar{\beta} & P_{1} \bar{\beta} & \ldots & P_{m-1} \bar{\beta}\end{array}\right)$, then $\bar{\beta}_{1}$ is a mapping of the family of sets $C(D)$ in the set $D \cup\{\varnothing\}$.

Remark, that if $P_{j}(0 \leq j \leq m-1)$ is such completeness sources, that $P_{j}=\varnothing$, then the equality $P_{j} \bar{\beta}=\varnothing$ always is hold. There also exists such a basic sources $P_{i}(0 \leq i \leq m-1)$ for which $\bigcup_{t \in P_{i}} t \beta=\varnothing$, i.e. $P_{i} \bar{\beta}=\varnothing$.
Definition 1.1. In the sequel, the elements $\bar{\beta}_{1}$ and $\bar{\beta}_{2}$ will be called normal and complement mappings for the binary relation $\bar{\beta} \in B_{X}(D)$.
Theorem 1.2. Let X is finite a set and $\alpha, \beta \in B_{X}(D)$, then for any subquasinormal representation $\bar{\beta}$ of a binary relation β the equality $\alpha \circ \beta=\alpha \circ \bar{\beta}$ is hold (see [2], Proposition 2).
Proof. Let $x(\alpha \circ \beta) y$ for some $x \in X$ and $y \in \breve{D}$. Then $x \alpha z \beta y$ for some $z \in \breve{D}$ since $x \alpha z$. So, we have $z \bar{\beta} y$ by definition subquasinormal representation $\bar{\beta}$ of a binary relation β and $z, y \in \breve{D}$. Thus the condition $x \alpha z \bar{\beta} y$ is hold, i.e. $\alpha \circ \beta \subseteq \alpha \circ \bar{\beta}$.
In the other hand, if $x^{\prime} \alpha z^{\prime} \bar{\beta} y^{\prime}$ for some $x^{\prime}, z^{\prime}, y^{\prime} \in X$, then $z^{\prime}, y^{\prime} \in \breve{D}$ since $\alpha, \bar{\beta} \in B_{X}(D)$. From the condition $z^{\prime} \in \breve{D}$ and the formal equalities follows that $z^{\prime} \in P_{k}$ for some $0 \leq k \leq m-1$, i.e. $z^{\prime}\left(\bigcup_{i=0}^{m-1}\left(P_{i} \times \bigcup_{t \in P_{i}} t \beta\right)\right) y^{\prime}$. Of the last condition and from the condition $\bigcup_{i=0}^{m-1}\left(P_{i} \times \bigcup_{t \in P_{i}} t \beta\right) \subseteq \beta$ we obtain that the conditions $z^{\prime} \beta y^{\prime}$ and $x^{\prime} \alpha z^{\prime} \beta y^{\prime}$ are hold. So, we have that $\alpha \circ \bar{\beta} \subseteq \alpha \circ \beta$.
Therefore the equality $\alpha \circ \beta=\alpha \circ \bar{\beta}$ is true.
Theorem 1.2 is proved.

ISSN: 2319-5967

ISO 9001:2008 Certified

International Journal of Engineering Science and Innovative Technology (IJESIT)

Volume 5, Issue 6, November 2016
Theorem 1.3. Let \tilde{B} be any generating set of the semi group $B_{X}(D)$. If for some α and δ of the set \tilde{B} and subquasinormal representation $\bar{\beta} \in B_{X}(D)$ of a binary relation $\beta \in \tilde{B}$ the inequality $\alpha \neq \delta \circ \bar{\beta}$ is hold, then the condition $\alpha \neq \delta \circ \beta$ is also true.
Proof. If $\alpha=\delta \circ \beta$ for some $\alpha, \delta, \beta \in \tilde{B}$, then from the theorem 1.2 follows, that $\alpha=\delta \circ \beta=\delta \circ \bar{\beta}_{1}$ for some $\bar{\beta}_{1} \in B_{X}(D)$ and $\bar{\beta}$ is some subquasinormal representation of a binary relation β. But equality $\alpha=\delta \circ \bar{\beta}_{1}$ contradict the condition $\alpha \neq \delta \circ \bar{\beta}$ for any subquasinormal representations $\bar{\beta} \in B_{X}(D)$ of a binary relation β. Thus, we have that the representation of a binary relation α of the form $\alpha \neq \delta \circ \beta$ is true.
Theorem 1.3 is proved.
Example 1.1. Let $X=\{1,2,3,4,5\}, D=\{\varnothing,\{2\},\{1,2\}\}$, then $P_{0}=\varnothing, P_{1}=\{1\}, P_{2}=\{2\}$. If

$\beta=\{(2,1),(2,2),(3,1),(4,1),(4,2),(5,1)\}, \quad$ then $\quad \beta \in B_{X}(D), \quad \bar{\beta}_{1}=\left(\begin{array}{ccc}\varnothing & P_{1} & P_{2} \\ \varnothing & \varnothing & \{1,2\}\end{array}\right)$, $\bar{\beta}_{2}=\left(\begin{array}{ccc}3 & 4 & 5 \\ \{1\} & \{1,2\} & \{1\}\end{array}\right)$ and subquasinormal representation of a binary relation $\bar{\beta}$ has a form

$$
\bar{\beta}=\left(P_{0} \times \varnothing\right) \cup\left(P_{1} \times \varnothing\right) \cup\left(P_{2} \times\{1,2\}\right) \cup(\{3\} \times\{1\}) \cup(\{4\} \times\{1,2\}) \cup(\{5\} \times\{1\})
$$

where P_{1}, P_{2} are basic sources and P_{0} is completeness sources.
Definition 1.2. We say that an element α of the semi group $B_{X}(D)$ is external if $\alpha \neq \delta \circ \beta$ for all $\delta, \beta \in B_{X}(D) \backslash\{\alpha\}$ (see [1], Definition 1.15.1).
It is well know, that if B is all external elements of the semi group $B_{X}(D)$ and B^{\prime} be any generated set for the $B_{X}(D)$, then $B \subseteq B^{\prime}$ (see [1], Lemma 1.15.1).
2.1. Let $\Sigma_{1}(X, 3)$ be a class of all X-semilattices of unions whose every element is isomorphic to an X - semi lattice of unions $D=\left\{Z_{2}, Z_{1}, \breve{D}\right\}$, which satisfies the condition $Z_{2} \subset Z_{1} \subset \breve{D}$ (see Figure 2.1):

Let $C(D)=\left\{P_{0}, P_{1}, P_{2}\right\}$ is a family sets, where P_{0}, P_{1}, P_{2} are pairwise disjoint subsets of the set X and $\varphi=\left(\begin{array}{lll}\breve{D} & Z_{1} & Z_{2} \\ P_{0} & P_{1} & P_{2}^{2}\end{array}\right)$ is a mapping of the semilattice D onto the family sets $C(D)$. Then for the formal equalities of the semilattice D we have a form:
Fig. 2.1

$$
\begin{align*}
& \breve{D}=P_{0} \cup P_{1} \cup P_{2}, \\
& Z_{1}=P_{0} \cup P_{2}, \tag{2.1}\\
& Z_{2}=P_{0},
\end{align*}
$$

Here the elements P_{1}, P_{2} are basis sources, the element P_{0} is sources of completeness of the semilattice D. Therefore $|X| \geq 2$ since $\left|P_{1}\right| \geq 1$ and $\left|P_{2}\right| \geq 1$.
It is well know the following statement (see [4],).
Theorem 2.1. Let $D=\left\{Z_{2}, Z_{1}, \breve{D}\right\} \in \Sigma_{1}(X, 3)$ and $Z_{2} \neq \varnothing$. If $E_{X}^{(r)}(D)$ be the set all right units of the semigroup $B_{X}(D)$,

$$
\begin{aligned}
& \sigma_{1}=\left(Z_{2} \times Z_{2}\right) \cup\left(\left(X \backslash Z_{2}\right) \times Z_{1}\right), \sigma_{2}=\left(Z_{2} \times Z_{2}\right) \cup\left(\left(X \backslash Z_{2}\right) \times \breve{D}\right), \\
& \sigma_{3}=\left(Z_{1} \times Z_{2}\right) \cup\left(\left(X \backslash Z_{1}\right) \times \breve{D}\right), \sigma_{4}=\left(Z_{1} \times Z_{1}\right) \cup\left(\left(X \backslash Z_{1}\right) \times \breve{D}\right)
\end{aligned}
$$

and $B^{\prime}=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\}$, then $B=E_{X}^{(r)}(D) \cup B^{\prime}$ is irreducible generated set for the semigroup $B_{X}(D)$. In the sequel, we will be assumption, that $Z_{2}=\varnothing$.

ISSN: 2319-5967

ISO 9001:2008 Certified

Volume 5, Issue 6, November 2016
Lemma 2.1. Let $D=\left\{\varnothing, Z_{1}, \breve{D}\right\} \in \Sigma_{1}(X, 3)$ and $B=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right)=D\right\}$. Then the following statements are true:
a) $B \neq \varnothing$ if and only if, when $|X| \geq 3$;
b) $P_{0}=\cap D=\varnothing, P_{1}=\breve{D} \backslash Z_{1}$ and $P_{2}=Z_{1}$;
c) If $\alpha=\delta \circ \beta$, for some $\alpha \in B, \delta, \beta \in B_{X}(D)$, then $V(D, \beta)=D$;
d) if $|X| \geq 3$, then B is a set external elements of the semigroup $B_{X}(D)$.

Proof. Let $D=\left\{\varnothing, Z_{1}, \breve{D}\right\} \in \Sigma_{1}(X, 3)$,

1) If $B \neq \varnothing$ and $\alpha \in B$ for some $\alpha \in B_{X}(D)$, then, there exists quasinormal representations of a binary relation α of the form

$$
\alpha=\left(Y_{2}^{\alpha} \times \varnothing\right) \cup\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right),
$$

Where $\left|Y_{i}^{\alpha}\right| \geq 1$ for all $i=0,1,2$ (if $Y_{j}^{\delta}=\varnothing$ for some $j(0 \leq j \leq 2)$, then $V\left(X^{*}, \alpha\right) \neq D$). So, the inequality $|X| \geq 3$ is true. Of this we obtain, that $B=\varnothing$, if $|X|=2$.
The statement a) of the Lemma 2.1 is proved.
2) By assumption $Z_{2}=\varnothing$, then by definition of the set P_{0} we obtain, that $P_{0}=\cap D=\varnothing$. Now, from the formal equality (2.1) follows that $P_{2}=Z_{1}$ and $P_{1}=\breve{D} \backslash P_{2}=\breve{D} \backslash Z_{1}$ since $P_{2} \cap P_{1}=\varnothing$.
The statement b) of the Lemma 2.1 is proved.
3) Let $\alpha=\delta \circ \beta$, for some $\alpha \in B, \delta, \beta \in B_{X}(D)$. Then $D=V\left(X^{*}, \alpha\right) \subseteq V(D, \beta)$ (see [1], Theorem 4.1.1). So, $D=V(D, \beta)$ since the inclusion $V(D, \beta) \subseteq D$ for any semilattice D always is hold.
The statement c) of the Lemma 2.1 is proved.
4) Now, let $\alpha=\delta \circ \beta$ for some $\alpha \in B$ and $\delta, \beta \in B_{X}(D) \backslash\{\alpha\}$, then quasinormal representation of a binary relations α and δ has a form
$\alpha=\left(Y_{2}^{\alpha} \times \varnothing\right) \cup\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$ and $\delta=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1}\right) \cup\left(Y_{0}^{\delta} \times \breve{D}\right)$,
Where $Y_{2}^{\alpha}, Y_{1}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$, i.e. $V\left(X^{*}, \alpha\right)=D$. By Theorem 1.2 follows that $\alpha=\delta \circ \beta=\delta \circ \bar{\beta}$, where $\bar{\beta}$ is subquasinormal representation of a binary relation β. It is easy to see, that

$$
\begin{equation*}
\alpha=\delta \circ \bar{\beta}=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \bar{\beta}\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \bar{\beta}\right) . \tag{2.2}
\end{equation*}
$$

For the sets X and \breve{D} we consider the following cases:
$\left.\mathbf{a}^{\prime}\right) X=\breve{D}$. Then from the equality (1.2) follows that $\bar{\beta}_{2}$ is empty mapping since $X \backslash \breve{D}=\varnothing$. So, there exists only two subquasinormal representations $\bar{\beta}$ of a binary relation β for which $V(D, \beta)=D$ (see statement c) of the Lemma 2.1) and $\bar{\beta}=\beta$:

$$
\bar{\beta}=(\varnothing \times \varnothing) \cup\left(\left(\breve{D} \backslash Z_{1}\right) \times Z_{1}\right) \cup\left(Z_{1} \times \breve{D}\right) \text { or } \bar{\beta}=(\varnothing \times \varnothing) \cup\left(Z_{1} \times Z_{1}\right) \cup\left(\left(\breve{D} \backslash Z_{1}\right) \times \breve{D}\right),
$$

where $\bar{\beta} \in B_{X}(D)$.
If $\bar{\beta}=(\varnothing \times \varnothing) \cup\left(\left(\breve{D} \backslash Z_{1}\right) \times Z_{1}\right) \cup\left(Z_{1} \times \breve{D}\right)$, then

$$
\begin{aligned}
& \delta \circ \bar{\beta}=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \bar{\beta}\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \bar{\beta}\right)= \\
& =\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times \widetilde{D}\right) \cup\left(Y_{0}^{\delta} \times \widetilde{D}\right)=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(\left(Y_{1}^{\delta} \cup Y_{0}^{\delta}\right) \times \breve{D}\right) \notin B
\end{aligned}
$$

since $V\left(X^{*}, \delta \circ \bar{\beta}\right) \subseteq\{\varnothing, \breve{D}\} \neq D$. So, we have that $\alpha \neq \delta \circ \bar{\beta}$.
If $\bar{\beta}=(\varnothing \times \varnothing) \cup\left(Z_{1} \times Z_{1}\right) \cup\left(\left(\breve{D} \backslash Z_{1}\right) \times \breve{D}\right)$, then

ISSN: 2319-5967

ISO 9001:2008 Certified

International Journal of Engineering Science and Innovative Technology (IJESIT)
Volume 5, Issue 6, November 2016

$$
\begin{aligned}
& \delta \circ \bar{\beta}=\left(Y_{2}^{\alpha} \times \varnothing\right) \cup\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)= \\
& =\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \bar{\beta}\right) \cup\left(Y_{0}^{\delta} \times \bar{D} \bar{\beta}\right)= \\
& =\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1}\right) \cup\left(Y_{0}^{\delta} \times \bar{D}\right) .
\end{aligned}
$$

So, $Y_{2}^{\delta}=Y_{2}^{\alpha}, Y_{1}^{\delta}=Y_{1}^{\alpha}, Y_{0}^{\delta}=Y_{0}^{\alpha}$. Of this follows that $\alpha=\delta$. But, the equality $\alpha=\delta$ contradict the condition $\delta \in B_{X}(D) \backslash\{\alpha\}$. So, we have that $\alpha \neq \delta \circ \bar{\beta}$.
In the sequel we will be assumption, that $X \neq \breve{D}$.
$\left.\mathbf{b}^{\prime}\right)$ Let $|X \backslash \breve{D}| \geq 1$. By preposition we have $P_{0}=\varnothing$. In this case

$$
\begin{aligned}
& \bar{\beta}_{1}^{1}=\left(\begin{array}{ccc}
\varnothing & \breve{D} \backslash Z_{1} & Z_{1} \\
\varnothing & \varnothing & \varnothing
\end{array}\right), \bar{\beta}_{1}^{2}=\left(\begin{array}{ccc}
\varnothing & \breve{D} \backslash Z_{1} & Z_{1} \\
\varnothing & \varnothing & Z_{1}
\end{array}\right), \bar{\beta}_{1}^{3}=\left(\begin{array}{ccc}
\varnothing & \breve{D} \backslash Z_{1} & Z_{1} \\
\varnothing & Z_{1} & \varnothing
\end{array}\right), \\
& \beta_{1}^{4}=\left(\begin{array}{ccc}
\varnothing & \breve{D} \backslash Z_{1} & Z_{1} \\
\varnothing & Z_{1} & Z_{1}
\end{array}\right), \bar{\beta}_{1}^{5}=\left(\begin{array}{ccc}
\varnothing & \breve{D} \backslash Z_{1} & Z_{1} \\
\varnothing & Z_{1} & \breve{D}
\end{array}\right), \bar{\beta}_{1}^{6}=\left(\begin{array}{ccc}
\varnothing & \breve{D} \backslash Z_{1} & Z_{1} \\
\varnothing & \varnothing & \breve{D}
\end{array}\right), \\
& \bar{\beta}_{1}^{7}=\left(\begin{array}{ccc}
\varnothing & \breve{D} \backslash Z_{1} & Z_{1} \\
\varnothing & \breve{D} & \breve{D}
\end{array}\right), \bar{\beta}_{1}^{8}=\left(\begin{array}{ccc}
\varnothing & \breve{D} \backslash Z_{1} & Z_{1} \\
\varnothing & \breve{D} & \varnothing
\end{array}\right), \bar{\beta}_{1}^{9}=\left(\begin{array}{ccc}
\varnothing & \breve{D} \backslash Z_{1} & Z_{1} \\
\varnothing & \breve{D} & Z_{1}
\end{array}\right) .
\end{aligned}
$$

are all mappings of the set $C(D)=\left\{\varnothing, P_{1}, P_{2}\right\}$ (see statement b) of the Lemma 2.1) in the semilattice D satisfying the condition $\bar{\beta}_{1}^{i}\left(P_{0}\right)=\varnothing(i=1,2, \ldots, 8,9)$.
Let $\beta \in B_{X}(D)$ and $\bar{\beta}$ is such subquasinormal representation of a binary relation β for which $\beta_{1}^{i}(i=1,2, \ldots, 8,9)$ is normal mapping for the binary relation $\bar{\beta}$.
For a binary relation $\bar{\beta}$ we consider the following cases:

1) If $\bar{\beta}_{1}^{1}=\left(\begin{array}{ccc}\varnothing & \breve{D} \backslash Z_{1} & Z_{1} \\ \varnothing & \varnothing & \varnothing\end{array}\right)$, and $\bar{\beta}_{2}^{1}$ be any mapping of the set $X \backslash \breve{D}$ in the set $D \backslash\{\varnothing\}=\left\{Z_{1}, \breve{D}\right\}$. So, if

$$
\begin{equation*}
\bar{\beta}=(\breve{D} \times \varnothing) \cup \bigcup_{t^{\prime} \in X \backslash \bar{D}}\left(\left\{t^{\prime}\right\} \times \bar{\beta}_{2}^{1}\left(t^{\prime}\right)\right), \tag{2.3}
\end{equation*}
$$

then $\bar{\beta} \in B_{X}(D)$. From the equalities (2.2) and (2.3) we obtain that:

$$
\begin{aligned}
& Z_{1} \bar{\beta}=\varnothing, \breve{D} \bar{\beta}=\varnothing \\
& \delta \circ \bar{\beta}=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \bar{\beta}\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \bar{\beta}\right)= \\
& =\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times \varnothing\right) \cup\left(Y_{0}^{\delta} \times \varnothing\right)=X \times \varnothing=\varnothing \notin B
\end{aligned}
$$

since $V\left(X^{*}, \delta \circ \bar{\beta}\right) \subseteq\{\varnothing\} \neq D$. So, we have that $\alpha \neq \delta \circ \bar{\beta}$.
2) If $\bar{\beta}_{1}^{2}=\left(\begin{array}{ccc}\varnothing & \breve{D} \backslash Z_{1} & Z_{1} \\ \varnothing & \varnothing & Z_{1}\end{array}\right)$ and $\bar{\beta}_{2}^{2}$ be a mapping of the set $X \backslash \breve{D}$ in the set $D \backslash\left\{\varnothing, Z_{1}\right\}=\{\breve{D}\}$. So, if

$$
\begin{equation*}
\bar{\beta}=\left(\left(\breve{D} \backslash Z_{1}\right) \times \varnothing\right) \cup\left(Z_{1} \times Z_{1}\right) \cup \bigcup_{t^{\prime} \in X \backslash \bar{D}}\left(\left\{t^{\prime}\right\} \times \bar{\beta}_{2}^{2}\left(t^{\prime}\right)\right), \tag{2.4}
\end{equation*}
$$

then $\bar{\beta} \in B_{X}(D)$. From the equalities (2.2) and (2.4) follows that:

$$
\begin{aligned}
& Z_{1} \bar{\beta}=Z_{1}, \breve{D} \bar{\beta}=Z_{1}, \\
& \delta \circ \bar{\beta}=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \bar{\beta}\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \bar{\beta}\right)= \\
& =\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1}\right) \cup\left(Y_{0}^{\delta} \times Z_{1}\right)=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(\left(Y_{1}^{\delta} \cup Y_{0}^{\delta}\right) \times Z_{1}\right) \notin B
\end{aligned}
$$

since $V\left(X^{*}, \delta \circ \bar{\beta}\right) \subseteq\left\{\varnothing, Z_{1}\right\} \neq D$. So, we have that $\alpha \neq \delta \circ \bar{\beta}$.
For the mapping $\bar{\beta}_{1}^{3}=\left(\begin{array}{ccc}\varnothing & \breve{D} \backslash Z_{1} & Z_{1} \\ \varnothing & Z_{1} & \varnothing\end{array}\right)$, we analogically above, may proved that $\alpha \neq \delta \circ \bar{\beta}$.
3) If $\beta_{1}^{4}=\left(\begin{array}{ccc}\varnothing & \breve{D} \backslash Z_{1} & Z_{1} \\ \varnothing & Z_{1} & Z_{1}\end{array}\right)$ and $\bar{\beta}_{2}^{4}$ be a mapping of the set $X \backslash \breve{D}$ in the set $D \backslash\left\{\varnothing, Z_{1}\right\}=\{\breve{D}\}$. So, if

ISSN: 2319-5967
ISO 9001:2008 Certified
International Journal of Engineering Science and Innovative Technology (IJESIT)
Volume 5, Issue 6, November 2016

$$
\begin{equation*}
\bar{\beta}=\left(\widetilde{D} \times Z_{1}\right) \cup \bigcup_{t^{\prime} \in \backslash \backslash \bar{D}}\left(\left\{t^{\prime}\right\} \times \bar{\beta}_{2}^{4}\left(t^{\prime}\right)\right), \tag{2.5}
\end{equation*}
$$

then $\bar{\beta} \in B_{X}(D)$. From the equalities (2.2) and (2.5) we obtain:

$$
\begin{aligned}
& Z_{1} \bar{\beta}=\breve{D} \bar{\beta}=Z_{1} \\
& \delta \circ \bar{\beta}=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \bar{\beta}\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \bar{\beta}\right)= \\
& =\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1}\right) \cup\left(Y_{0}^{\delta} \times Z_{1}\right)=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(\left(Y_{1}^{\delta} \cup Y_{0}^{\delta}\right) \times Z_{1}\right) \notin B
\end{aligned}
$$

since $V\left(X^{*}, \delta \circ \bar{\beta}\right) \subseteq\left\{\varnothing, Z_{1}\right\} \neq D$. So, we have that $\alpha \neq \delta \circ \bar{\beta}$.
4) If $\bar{\beta}_{1}^{5} \subseteq \beta$, where $\bar{\beta}_{1}^{5}=\left(\begin{array}{ccc}\varnothing \breve{D} \backslash Z_{1} & Z_{1} \\ \varnothing & Z_{1} & \breve{D}^{2}\end{array}\right)$ and $\bar{\beta}_{2}^{5}$ be a mapping of the set $X \backslash \check{D}$ in the set D. So, if

$$
\begin{equation*}
\bar{\beta}=\left(\left(\breve{D} \backslash Z_{1}\right) \times Z_{1}\right) \cup\left(Z_{1} \times \breve{D}\right) \cup \bigcup_{t^{\prime} \in X \backslash \bar{D}}\left(\left\{t^{\prime}\right\} \times \bar{\beta}_{2}^{5}\left(t^{\prime}\right)\right), \tag{2.6}
\end{equation*}
$$

then $\bar{\beta} \in B_{X}(D)$. From the equalities (2.2) and (2.6) we have:

$$
\begin{aligned}
& Z_{1} \bar{\beta}=\breve{D}, \breve{D} \bar{\beta}=\breve{D}, \\
& \delta \circ \bar{\beta}=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \bar{\beta}\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \bar{\beta}\right)= \\
& =\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times \widetilde{D}\right) \cup\left(Y_{0}^{\delta} \times \widetilde{D}\right)=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(\left(Y_{1}^{\delta} \cup Y_{0}^{\delta}\right) \times \breve{D}\right) \notin B
\end{aligned}
$$

since $V\left(X^{*}, \delta \circ \bar{\beta}\right) \subseteq\{\varnothing, \breve{D}\} \neq D$. So, we have that $\alpha \neq \delta \circ \bar{\beta}$.
For the mappings β are $\bar{\beta}_{1}^{6}=\left(\begin{array}{ccc}\varnothing \breve{D} \backslash Z_{1} & Z_{1} \\ \varnothing & \varnothing & D\end{array}\right), \bar{\beta}_{1}^{7}=\left(\begin{array}{ccc}\varnothing \breve{D} \backslash Z_{1} & Z_{1} \\ \varnothing & \breve{D} & \breve{D}\end{array}\right)$, then we analogically above may proved, that $\alpha \neq \delta \circ \bar{\beta}$.
5) If $\bar{\beta}_{1}^{8} \subseteq \beta$, where $\bar{\beta}_{1}^{8}=\left(\begin{array}{ccc}\varnothing & \breve{D} \backslash Z_{1} & Z_{1} \\ \varnothing & \breve{D} & \varnothing\end{array}\right)$ and $\bar{\beta}_{2}^{8}$ be a mapping of the set $X \backslash \breve{D}$ in the $D \backslash\{\varnothing, \breve{D}\}=\left\{Z_{1}\right\}$. So, if

$$
\begin{equation*}
\bar{\beta}=\left(Z_{1} \times \varnothing\right) \cup\left(\left(\breve{D} \backslash Z_{1}\right) \times \breve{D}\right) \cup \bigcup_{t^{\prime} \in \times \backslash \bar{D}}\left(\left\{t^{\prime}\right\} \times \bar{\beta}_{2}^{8}\left(t^{\prime}\right)\right), \tag{2.7}
\end{equation*}
$$

then $\bar{\beta} \in B_{X}(D)$. From the equalities (2.2) and (2.7) we obtain, that:

$$
\begin{aligned}
& Z_{1} \bar{\beta}=\varnothing, \check{D} \bar{\beta}=\breve{D}, \\
& \delta \circ \bar{\beta}=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \bar{\beta}\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \bar{\beta}\right)= \\
& =\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times \varnothing\right) \cup\left(Y_{0}^{\delta} \times \widetilde{D}\right)=\left(\left(Y_{2}^{\delta} \cup Y_{1}^{\delta}\right) \times \varnothing\right) \cup\left(Y_{0}^{\delta} \times \breve{D}\right) \notin B
\end{aligned}
$$

since $V\left(X^{*}, \delta \circ \bar{\beta}\right) \subseteq\{\varnothing, \breve{D}\} \neq D$. So, we have that $\alpha \neq \delta \circ \bar{\beta}$.
6) If $\bar{\beta}_{1}^{9} \subseteq \beta$, where $\bar{\beta}_{1}^{9}=\left(\begin{array}{ccc}\varnothing & \breve{D} \backslash Z_{1} & Z_{1} \\ \varnothing & \breve{D} & Z_{1}\end{array}\right)$ and $\bar{\beta}_{2}^{9}$ be a mapping of the set $X \backslash \breve{D}$ in the semilattice D. So, if

$$
\begin{equation*}
\bar{\beta}=\left(Z_{1} \times Z_{1}\right) \cup\left(\left(\widetilde{D} \backslash Z_{1}\right) \times \widetilde{D}\right) \cup \bigcup_{i^{\prime} \in \backslash \backslash \bar{D}}\left(\left\{t^{\prime}\right\} \times \bar{\beta}_{2}^{9}\left(t^{\prime}\right)\right), \tag{2.8}
\end{equation*}
$$

then $\bar{\beta} \in B_{X}(D)$. From the equalities (2.2) and (2.8) follows that:

$$
\begin{aligned}
& Z_{1} \bar{\beta}=Z_{1}, \check{D} \bar{\beta}=\breve{D}, \\
& \delta \circ \bar{\beta}=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \bar{\beta}\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \bar{\beta}\right)= \\
& =\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times \varnothing\right) \cup\left(Y_{0}^{\delta} \times \widetilde{D}\right)=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1}\right) \cup\left(Y_{0}^{\delta} \times \breve{D}\right) .
\end{aligned}
$$

So, $Y_{2}^{\delta}=Y_{2}^{\alpha}, Y_{1}^{\delta}=Y_{1}^{\alpha}, Y_{0}^{\delta}=Y_{0}^{\alpha}$. Of this follows, that $\alpha=\delta$. But, the equality $\alpha=\delta$ contradict the condition, that $\delta \in B_{X}(D) \backslash\{\alpha\}$. So, we have that $\alpha \neq \delta \circ \bar{\beta}$.

ISSN: 2319-5967

ISO 9001:2008 Certified

International Journal of Engineering Science and Innovative Technology (IJESIT)

Volume 5, Issue 6, November 2016
Thus, we have $\alpha \neq \delta \circ \bar{\beta}$ for any subquasinormal representation of a binary relation $\beta \in B_{X}(D) \backslash\{\alpha\}$ since the mappings $\bar{\beta}_{1}^{1}-\bar{\beta}_{1}^{9}$ are all mappings of the set $C(D)=\left\{\varnothing, P_{1}, P_{2}\right\}$ in the semilattice D satisfying the condition $\bar{\beta}_{1}^{i}(\varnothing)=\varnothing(i=1,2, \ldots, 9)$. Of this and by Theorem 1.3 follows that $\alpha \neq \delta \circ \beta$ for all $\delta, \beta \in B_{X}(D) \backslash\{\alpha\}$.
So, we have that the set B (if $B \neq \varnothing$, i.e. $|X| \geq 3$) is a set external elements of the semigroup $B_{X}(D)$.
Lemma 2.1 is proved.
Lemma 2.2. Let $|X| \geq 3$ and $D=\left\{\varnothing, Z_{1}, \breve{D}\right\} \in \Sigma_{1}(X, 3)$, then the following statements are true:
a) $Z_{1} \beta=\varnothing, \breve{D} \beta=Z_{1}$ for some $\beta \in B$ if and only if, when $|X \backslash \breve{D}| \geq 1$;
b) $Z_{1} \beta=\breve{D} \beta=Z_{1}$ for some $\beta \in B$ if and only if $|X \backslash \breve{D}| \geq 1$;
c) $Z_{1} \beta=\breve{D} \beta=\varnothing$ for some $\beta \in B$ if and only if $|X \backslash \breve{D}| \geq 2$.

Proof. Let $Z_{1} \beta=\varnothing, \breve{D} \beta=Z_{1}$ for some $\beta \in B$. Then qusinormal representation of a binary relation β has e form $\beta=\left(Y_{2}^{\beta} \times \varnothing\right) \cup\left(Y_{1}^{\beta} \times Z_{1}\right) \cup\left(Y_{0}^{\beta} \times \breve{D}\right)$, where $Y_{2}^{\beta}, Y_{1}^{\beta}, Y_{0}^{\beta} \notin\{\varnothing\}$. By preposition $\breve{D} \cap Y_{0}^{\beta}=\varnothing$ since $\breve{D} \beta=Z_{1}$. So, $\varnothing \neq Y_{0}^{\beta} \subseteq X \backslash \breve{D}$, i.e. $|X \backslash \breve{D}| \geq 1$.
In the other hand, if $|X \backslash \breve{D}| \geq 1$, then $\beta=\left(Z_{1} \times \varnothing\right) \cup\left(\left(\breve{D} \backslash Z_{1}\right) \times Z_{1}\right) \cup((X \backslash \breve{D}) \times \breve{D})$ is a binary relation of the set B, for which $Z_{1} \beta=\varnothing$ and $\breve{D} \beta=Z_{1}$.
The statement a) of the Lemma 2.2 is proved.
Let $Z_{1} \beta=\breve{D} \beta=Z_{1}$ for some $\beta \in B$. Then qusinormal representation of a binary relation β has e form $\beta=\left(Y_{2}^{\beta} \times \varnothing\right) \cup\left(Y_{1}^{\beta} \times Z_{1}\right) \cup\left(Y_{0}^{\beta} \times \breve{D}\right)$, where $Y_{2}^{\beta}, Y_{1}^{\beta}, Y_{0}^{\beta} \notin\{\varnothing\}$ and $Y_{0}^{\beta} \cap \breve{D}=\varnothing$. Of this follows, that $\varnothing \neq Y_{0}^{\beta} \subseteq X \backslash \breve{D}$, i.e. $|X \backslash \breve{D}| \geq 1$ since $Y_{0}^{\beta} \notin\{\varnothing\}$.
Of the other hand, if $|X \backslash \breve{D}| \geq 1$, then for the binary relation

$$
\beta=\left(\left(\breve{D} \backslash Z_{1}\right) \times \varnothing\right) \cup\left(Z_{1} \times Z_{1}\right) \cup((X \backslash \breve{D}) \times \breve{D})
$$

we have $\beta \in B$ and $Z_{1} \beta=\breve{D} \beta=Z_{1}$.
The statement b) of the Lemma 2.2 is proved.
Let $Z_{1} \beta=\breve{D} \beta=\varnothing$ for some $\beta \in B$. Then qusinormal representation of a binary relation β has e form $\beta=\left(Y_{2}^{\beta} \times \varnothing\right) \cup\left(Y_{1}^{\beta} \times Z_{1}\right) \cup\left(Y_{0}^{\beta} \times \breve{D}\right)$, where $Y_{2}^{\beta}, Y_{1}^{\beta}, Y_{0}^{\beta} \notin\{\varnothing\}$ and $t \beta=\varnothing$ for all $t \in \breve{D}$ since \varnothing is smallest element of the semilattice D. So, if $Y_{2}^{\beta}=\breve{D}, t_{1} \beta=Z_{1}$ and $t_{0} \beta=\breve{D}$ for some $t_{1}, t_{0} \in X \backslash \breve{D}$. It is easy to see, that $Y_{2}^{\beta}, Y_{1}^{\beta}$ and Y_{0}^{β} are smallest sets for which $\beta \in B$. Of this follows that $|X \backslash \breve{D}| \geq 2$.
Of the other hand, let $|X \backslash \breve{D}| \geq 2$, i.e. $X \backslash \breve{D} \supseteq\left\{t_{1}, t_{0}\right\}$, then for the binary relation

$$
\beta=(\breve{D} \times \varnothing) \cup\left(\left\{t_{1}\right\} \times Z_{1}\right) \cup\left(\left(X \backslash\left(\breve{D} \cup\left\{t_{1}\right\}\right)\right) \times \breve{D}\right)
$$

we have $\beta \in B$ since $X \backslash\left(\breve{D} \cup\left\{t_{1}\right\}\right) \neq \varnothing$ and $Z_{1} \beta=\breve{D} \beta=\varnothing$.
The statement c) of the Lemma 2.2 is proved.
Lemma 2.2 is proved.
In the sequel, by symbols B_{1}, B_{2} and B_{3} we denoted the following sets:

$$
\begin{aligned}
& B_{1}=\left\{\alpha \in B_{X}(D) \mid \mathrm{V}\left(X^{*}, \alpha\right)=\left\{Z_{1}, \breve{D}\right\}\right\}, \\
& B_{2}=\left\{\alpha \in B_{X}(D) \mid \mathrm{V}\left(X^{*}, \alpha\right)=\{\varnothing, \breve{D}\}\right\}, \\
& B_{3}=\left\{\alpha \in B_{X}(D) \mid \mathrm{V}\left(X^{*}, \alpha\right)=\left\{\varnothing, Z_{1}\right\}\right\} .
\end{aligned}
$$

ISSN: 2319-5967
ISO 9001:2008 Certified
International Journal of Engineering Science and Innovative Technology (IJESIT)
Volume 5, Issue 6, November 2016
By definition of a sets B_{1}, B_{2} and B_{3} immediately follows, that

$$
\begin{equation*}
B_{1} \cap B_{2}=B_{1} \cap B_{3}=B_{2} \cap B_{3}=\varnothing . \tag{2.9}
\end{equation*}
$$

Lemma 2.3. Let $|X| \geq 3, D=\left\{\varnothing, Z_{1}, \breve{D}\right\} \in \Sigma_{1}(X, 3)$ and

$$
B=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right)=D\right\} .
$$

Then the following statements are true;
a) the elements of the set $B_{1} \cup\left\{X \times Z_{1}, X \times \breve{D}\right\}$ do not generating by elements of the set B;
b) if $|X \backslash \breve{D}| \leq 1$, then element $\alpha=\varnothing$ do not generating by elements of the set B;
c) if $X=\breve{D}$, then elements of the set B_{3} do not generating by elements of the set B.

Proof. Let $\alpha=\delta \circ \beta$ for some $\alpha \in B_{X}(D)$ and $\delta, \beta \in B$. Then quasinormal representation of the binary relation δ has a form $\delta=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1}\right) \cup\left(Y_{0}^{\delta} \times \breve{D}\right)$, where $Y_{2}^{\delta}, Y_{1}^{\delta}, Y_{0}^{\delta} \notin\{\varnothing\}$. In this case the following equalities are hold:

$$
\begin{equation*}
\alpha=\delta \circ \beta=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \beta\right) \tag{2.10}
\end{equation*}
$$

For the binary relation α we consider the following cases:

1) If $\alpha \in B_{X}\left(D^{\prime}\right)=B_{1} \cup\left\{X \times Z_{1}, X \times \breve{D}\right\}$, where $D^{\prime}=\left\{Z_{1}, \breve{D}\right\}$, then quasinormal representation of the binary relation α has a form $\alpha=\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$. From the equality (2.10) we obtain that

$$
\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)=\alpha=\delta \circ \beta=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \beta\right) .
$$

But last equality impossible since $Y_{2}^{\delta} \neq \varnothing$. So, the elements of the set $B_{1} \cup\left\{X \times Z_{1}, X \times \breve{D}\right\}$ do not generating by elements of the set B.

The statement a) of the lemma 2.3 is proved.
2) Now, if $\alpha=\varnothing$, then From the equality (2.10) follows that

$$
\varnothing=\alpha=\delta \circ \beta=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \beta\right)
$$

Of the last equalities follows that $Z_{1} \beta=\breve{D} \beta=\varnothing$. But by statement c) of the lemma 2.2 the equality $Z_{1} \beta=\breve{D} \beta=\varnothing$ for some $\beta \in B$ is possible only if, when $|X \backslash \breve{D}| \geq 2$. So, if $|X \backslash \breve{D}| \leq 1$, then binary relation $\alpha=\varnothing$ do not generating by elements of the set B.
The statement b) of the lemma 2.3 is proved.
3) Let $X=\breve{D}$ and $\alpha \in B_{3}$, then quasinormal representation of the binary relation α has a form $\alpha=\left(Y_{2}^{\alpha} \times \varnothing\right) \cup\left(Y_{1}^{\alpha} \times Z_{1}\right)$, where $Y_{2}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$. Then from the equality (2.10) follows that

$$
\left(Y_{2}^{\alpha} \times \varnothing\right) \cup\left(Y_{1}^{\alpha} \times Z_{1}\right)=\alpha=\delta \circ \beta=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \beta\right) .
$$

Last equalities is possible only if $Z_{1} \beta=\varnothing, \breve{D} \beta=Z_{1}$ or $Z_{1} \beta=\breve{D} \beta=Z_{1}$ since $Z_{1} \subset \breve{D}$.
a^{\prime}) If $Z_{1} \beta=\varnothing, \breve{D} \beta=Z_{1}$, then by statement a) of the Lemma 2.2 follows that $|X \backslash \breve{D}| \geq 1$ which contradict the conditions $X=\breve{D}$.
b^{\prime}) If $Z_{1} \beta=\breve{D} \beta=Z_{1}$, then by statement b) of the Lemma 2.2 follows that $|X \backslash \breve{D}| \geq 1$ which contradict the conditions $X=\breve{D}$.
So, of the conditions a^{\prime}) and b^{\prime}) follows that the elements of the set B_{3} do not generating by elements of the set B.
The statement c) of the lemma 2.3 is proved.
Lemma 2.3 is proved.

ISSN: 2319-5967

ISO 9001:2008 Certified

International Journal of Engineering Science and Innovative Technology (IJESIT)
Volume 5, Issue 6, November 2016
Lemma 2.4. Let $|X| \geq 3, D=\left\{\varnothing, Z_{1}, \breve{D}\right\} \in \Sigma_{1}(X, 3)$ and

$$
B=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right)=D\right\}, \gamma_{0}=\left(Z_{1} \times \varnothing\right) \cup\left(\left(X \backslash Z_{1}\right) \times Z_{1}\right) \text {. }
$$

Then the following statements are true:
a) if $|X \backslash \breve{D}| \geq 1$, then elements of the set $B_{2} \cup B_{3}$ are generating by elements of the set B;
b) if $X=\breve{D}$, then the elements of the set B_{3} are generating by elements of the set $B \cup B_{1} \cup\left\{\gamma_{0}\right\}$;
c) if $X=\breve{D}$, then the elements of the set B_{2} are generating by elements of the set $B_{1} \cup\left\{\gamma_{0}\right\}$.

Proof. Now, let $|X \backslash \breve{D}| \geq 1$ and α be arbitrary element of the set $B_{2} \cup B_{3}$. For the binary relation α we consider the following cases.

1) $\alpha \in B_{2}$. Then quasinormal representation of a binary relation α has a form $\alpha=\left(Y_{2}^{\alpha} \times \varnothing\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$, where $Y_{2}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$.
a^{\prime}) If $\left|Y_{0}^{\alpha}\right| \geq 1$, then $\left|Y_{2}^{\alpha}\right| \geq 2(|X| \geq 3)$ (see statement $\left.a\right)$ of the Lemma 2.1). In this case we suppose, that

$$
\beta=\left(Z_{1} \times \varnothing\right) \cup\left((X \backslash \breve{D}) \times Z_{1}\right) \cup\left(\left(\breve{D} \backslash Z_{1}\right) \times \breve{D}\right)
$$

then $\beta \in B$ since $|X \backslash \breve{D}| \geq 1$ and

$$
\begin{aligned}
& \delta \circ \beta=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \beta\right)= \\
& =\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times \varnothing\right) \cup\left(Y_{0}^{\delta} \times \breve{D}\right)= \\
& =\left(\left(Y_{2}^{\delta} \cup Y_{1}^{\delta}\right) \times \varnothing\right) \cup\left(Y_{0}^{\delta} \times \breve{D}\right)=\alpha,
\end{aligned}
$$

if $Y_{2}^{\delta} \cup Y_{1}^{\delta}=Y_{2}^{\alpha}$ and $Y_{0}^{\delta}=Y_{0}^{\alpha}$ since $\left|Y_{2}^{\delta}\right| \geq 1,\left|Y_{1}^{\delta}\right| \geq 1$ and $\left|Y_{0}^{\delta}\right| \geq 1$.
$\left.b^{\prime}\right)$ Let $\left|Y_{2}^{\alpha}\right| \geq 1$, then $\left|Y_{0}^{\alpha}\right| \geq 2(|X| \geq 3)$. In this case we suppose, that

$$
\beta=\left(\left(\breve{D} \backslash Z_{1}\right) \times \varnothing\right) \cup\left((X \backslash \breve{D}) \times Z_{1}\right) \cup\left(Z_{1} \times \breve{D}\right)
$$

then $\beta \in B$ since $|X \backslash \breve{D}| \geq 1$ and

$$
\begin{aligned}
& \delta \circ \beta=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \beta\right)= \\
& =\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times \breve{D}\right) \cup\left(Y_{0}^{\delta} \times \widetilde{D}\right)= \\
& =\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(\left(Y_{1}^{\delta} \cup Y_{0}^{\delta}\right) \times \widetilde{D}\right)=\alpha,
\end{aligned}
$$

if $Y_{2}^{\delta}=Y_{2}^{\alpha}$ and $Y_{1}^{\delta} \cup Y_{0}^{\delta}=Y_{0}^{\alpha}$ since $\left|Y_{2}^{\delta}\right| \geq 1,\left|Y_{1}^{\delta}\right| \geq 1$ and $\left|Y_{0}^{\delta}\right| \geq 1$.
Therefore, the elements of the set B_{2} are generating by elements of the set B.
2) $\alpha \in B_{3}$. Then quasinormal representation of a binary relation α has a form $\alpha=\left(Y_{2}^{\alpha} \times \varnothing\right) \cup\left(Y_{1}^{\alpha} \times Z_{1}\right)$, where $Y_{2}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$.
$\left.c^{\prime}\right)$ Let $\left|Y_{1}^{\alpha}\right| \geq 1$ then $\left|Y_{2}^{\alpha}\right| \geq 2(|X| \geq 3)$. In this case we suppose, that

$$
\beta=\left(Z_{1} \times \varnothing\right) \cup\left(\left(\breve{D} \backslash Z_{1}\right) \times Z_{1}\right) \cup((X \backslash \breve{D}) \times \breve{D}),
$$

then $\beta \in B$ since $|X \backslash \breve{D}| \geq 1$ and

$$
\begin{aligned}
& \delta \circ \beta=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \beta\right)= \\
& =\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times \varnothing\right) \cup\left(Y_{0}^{\delta} \times Z_{1}\right)= \\
& =\left(\left(Y_{2}^{\delta} \cup Y_{1}^{\delta}\right) \times \varnothing\right) \cup\left(Y_{0}^{\delta} \times Z_{1}\right)=\alpha,
\end{aligned}
$$

if $Y_{2}^{\delta} \cup Y_{1}^{\delta}=Y_{2}^{\alpha}$ and $Y_{0}^{\delta}=Y_{1}^{\alpha}$ since $\left|Y_{2}^{\delta}\right| \geq 1,\left|Y_{1}^{\delta}\right| \geq 1$ and $\left|Y_{0}^{\delta}\right| \geq 1$.
$\left.d^{\prime}\right)$ Let $\left|Y_{2}^{\alpha}\right| \geq 1$ then $\left|Y_{1}^{\alpha}\right| \geq 2(|X| \geq 3)$. In this case we suppose, that

ISSN: 2319-5967

ISO 9001:2008 Certified

International Journal of Engineering Science and Innovative Technology (IJESIT)
Volume 5, Issue 6, November 2016

$$
\beta=\left(\left(\breve{D} \backslash Z_{1}\right) \times \varnothing\right) \cup\left(Z_{1} \times Z_{1}\right) \cup((X \backslash \breve{D}) \times \breve{D}),
$$

then $\beta \in B$ since $|X \backslash \breve{D}| \geq 1$ and

$$
\begin{aligned}
& \delta \circ \beta=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \beta\right)= \\
& =\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1}\right) \cup\left(Y_{0}^{\delta} \times Z_{1}\right)= \\
& =\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(\left(Y_{1}^{\delta} \cup Y_{0}^{\delta}\right) \times Z_{1}\right)=\alpha,
\end{aligned}
$$

if $Y_{2}^{\delta}=Y_{2}^{\alpha}$ and $Y_{1}^{\delta} \cup Y_{0}^{\delta}=Y_{1}^{\alpha}$ since $\left|Y_{2}^{\delta}\right| \geq 1,\left|Y_{1}^{\delta}\right| \geq 1$ and $\left|Y_{0}^{\delta}\right| \geq 1$.
Therefore, the elements of the set B_{3} are generating by elements of the set B.
The statement a) of the Lemma 2.4 is proved.
3) Let $X=\breve{D}, \delta_{0}=\left(\left(X \backslash Z_{1}\right) \times Z_{1}\right) \cup\left(Z_{1} \times \breve{D}\right)$ and binary relation α be any element of the set B_{3}. Then $\delta_{0} \in B_{1}$ and quasinormal representation of a binary relation α has a form $\alpha=\left(Y_{2}^{\alpha} \times \varnothing\right) \cup\left(Y_{1}^{\alpha} \times Z_{1}\right)$, where $Y_{2}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$. Now, let $\alpha=\delta \circ \beta$ for some $\delta, \beta \in\left(B \cup B_{1} \cup\left\{\gamma_{0}\right\}\right) \backslash\{\alpha\}$.
For the sets Y_{2}^{α} and Y_{1}^{α} we consider the following cases.
$\left.e^{\prime}\right)$ let $Y_{1}^{\alpha} \geq 1$, then $Y_{2}^{\alpha} \geq 2(|X| \geq 3$, by preposition) and $\delta \in B \backslash\{\alpha\}$, then by definition of a set B the quasinormal representation of a binary relation δ has a form $\delta=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1}\right) \cup\left(Y_{0}^{\delta} \times \breve{D}\right)$, where $Y_{2}^{\delta}, Y_{1}^{\delta}, Y_{0}^{\delta} \notin\{\varnothing\}$ since $V\left(X^{*}, \delta\right)=D$ and

$$
\begin{aligned}
& \delta \circ \gamma_{0}=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \gamma_{0}\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \gamma_{0}\right)= \\
& =\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times \varnothing\right) \cup\left(Y_{0}^{\delta} \times Z_{1}\right)=\left(\left(Y_{2}^{\delta} \cup Y_{1}^{\delta}\right) \times \varnothing\right) \cup\left(Y_{0}^{\delta} \times Z_{1}\right)=\alpha,
\end{aligned}
$$

if $Y_{2}^{\delta} \cup Y_{1}^{\delta}=Y_{2}^{\alpha}$ and $Y_{0}^{\delta}=Y_{1}^{\alpha}$ since $Y_{2}^{\delta}, Y_{1}^{\delta}, Y_{0}^{\delta} \notin\{\varnothing\}$.
$\left.f^{\prime}\right)$ If $Y_{2}^{\alpha} \geq 1$, then $Y_{1}^{\alpha} \geq 2$ and

$$
\begin{aligned}
& \delta_{0} \circ \gamma_{0}=\left(\left(X \backslash Z_{1}\right) \times Z_{1} \gamma_{0}\right) \cup\left(Z_{1} \times \breve{D} \gamma_{0}\right)= \\
& \quad=\left(\left(X \backslash Z_{1}\right) \times \varnothing\right) \cup\left(Z_{1} \times Z_{1}\right)=\gamma_{1}, \\
& \delta \circ \gamma_{1}=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \gamma_{1}\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \gamma_{1}\right)= \\
& =\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1}\right) \cup\left(Y_{0}^{\delta} \times Z_{1}\right)=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(\left(Y_{1}^{\delta} \cup Y_{0}^{\delta}\right) \times Z_{1}\right)=\alpha,
\end{aligned}
$$

if $Y_{2}^{\delta}=Y_{2}^{\alpha}$ and $Y_{1}^{\delta} \cup Y_{0}^{\delta}=Y_{1}^{\alpha}$ since $Y_{2}^{\delta}, Y_{1}^{\delta}, Y_{0}^{\delta} \notin\{\varnothing\}$.
Thus, if $X=\breve{D}$, then the elements of the set B_{3} are generated by elements of the set $B \cup B_{1} \cup\left\{\gamma_{0}\right\}$.
The statement b) of the Lemma 2.4 is proved.
4) Let $X=\breve{D}$ and α be arbitrary element of the set B_{2}. Then quasinormal representation of a binary relation α has a form $\alpha=\left(Y_{2}^{\alpha} \times \varnothing\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$, where $Y_{2}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$. Now, let $\alpha=\delta \circ \beta$ for some $\delta, \beta \in\left(B_{1} \cup\left\{\gamma_{0}\right\}\right) \backslash\{\alpha\}$.
It is easy to see that the subsets Y_{2}^{α} and Y_{0}^{α} of the set X are two elements partitioning of the set X. Of this follows that $\delta=\left(Y_{2}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$ is any element of the set B_{1} and $\gamma_{0} \circ \delta_{0} \in B_{2}$ by definition of the binary relations γ_{0} and δ_{0}.

$$
\begin{aligned}
\gamma_{0} \circ \delta_{0}=\left(Z_{1} \times \varnothing \delta\right) & \cup\left(\left(X \backslash Z_{1}\right) \times Z_{1} \delta\right)= \\
& =\left(Z_{1} \times \varnothing\right) \cup\left(\left(X \backslash Z_{1}\right) \times \breve{D}\right)=\gamma_{2}, \\
\delta \circ \gamma_{2}=\left(Y_{2}^{\alpha} \times Z_{1} \gamma_{2}\right) & \cup\left(Y_{0}^{\alpha} \times \breve{D} \gamma_{2}\right)=\left(Y_{2}^{\alpha} \times \varnothing\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)=\alpha
\end{aligned}
$$

ISSN: 2319-5967

ISO 9001:2008 Certified

International Journal of Engineering Science and Innovative Technology (IJESIT)
 Volume 5, Issue 6, November 2016

Of this follows that the elements of the set B_{2} are generating by elements of the set $B_{1} \cup\left\{\gamma_{0}\right\}$.
The statement c) of the Lemma 2.4 is proved.
Lemma 2.4 is proved.
Lemma 2.5. Let $|X| \geq 3, D=\left\{\varnothing, Z_{1}, \breve{D}\right\} \in \Sigma_{1}(X, 3)$,

$$
B=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right)=D\right\} \text { and } B_{1}=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right)=\left\{Z_{1}, \breve{D}\right\}\right\} .
$$

If $|X \backslash \breve{D}| \geq 1$, then the set $B_{1}^{\prime}=B \cup B_{1}$ is irreducible generating set for the semi group $B_{X}(D)$.
Proof. Let $|X| \geq 3$ and $|X \backslash \breve{D}| \geq 1$. First, we proved that every element of the semi group $B_{X}(D)$ is generating by elements of the set B_{1}^{\prime}. Indeed, let α be arbitrary element of the semi group $B_{X}(D)$. Then quasinormal representation of a binary relation α has a form

$$
\alpha=\left(Y_{2}^{\alpha} \times \varnothing\right) \cup\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right) .
$$

For the sets $Y_{2}^{\alpha}, Y_{1}^{\alpha}$ and Y_{0}^{α} we consider the following cases:

1) $Y_{2}^{\alpha}, Y_{1}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$. Then we have $V\left(X^{*}, \alpha\right)=D$, i.e. $\alpha \in B$.
2) $Y_{2}^{\alpha}=\varnothing Y_{1}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$. Then quasinormal representation of a binary relation α has a form $\alpha=\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$, i.e. $\alpha \in B_{1}$.
3) $Y_{1}^{\alpha}=\varnothing \quad Y_{2}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$. Then quasinormal representation of a binary relation α has a form $\alpha=\left(Y_{2}^{\alpha} \times \varnothing\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$. So, $\alpha \in B_{2}$. From the statement $\left.a\right)$ of the Lemma 2.4 follows that the elements of the set B_{2} are generating by elements of the set B.
4) $Y_{0}^{\alpha}=\varnothing \quad Y_{2}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$. Then quasinormal representation of a binary relation α has a form $\alpha=\left(Y_{2}^{\alpha} \times \varnothing\right) \cup\left(Y_{1}^{\alpha} \times Z_{1}\right)$. So, $\alpha \in B_{3}$. From the statement $\left.a\right)$ of the Lemma 2.4 follows, that the elements of the set B_{3} is generating by elements of the set B.
5) If $Y_{2}^{\alpha}=Y_{0}^{\alpha}=\varnothing, Y_{1}^{\alpha} \neq \varnothing$, or $Y_{2}^{\alpha}=Y_{1}^{\alpha}=\varnothing, Y_{0}^{\alpha} \neq \varnothing$. Then quasinormal representation of a binary relation α has a form $\alpha=X \times Z_{1}$, or $\alpha=X \times \breve{D}$.
Let quasinormal representations of a binary relations δ and β_{0} has a form $\delta=\left(Y_{1}^{\delta} \times Z_{1}\right) \cup\left(Y_{0}^{\delta} \times \breve{D}\right)$ and $\beta_{0}=\left(\breve{D} \times Z_{1}\right) \cup((X \backslash \breve{D}) \times \breve{D})$ where $Y_{1}^{\delta}, Y_{0}^{\delta} \notin\{\varnothing\}$, i.e. $\delta, \beta_{0} \in B_{1}$ and $Y_{1}^{\delta} \cup Y_{0}^{\delta}=X$ since $X \backslash \breve{D} \neq \varnothing$ (by assumption we have $|X \backslash \breve{D}| \geq 1$). So, the following equalities are true:

$$
\begin{aligned}
& \delta \circ \beta_{0}=\left(\left(Y_{1}^{\delta} \times Z_{1} \beta_{0}\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \beta_{0}\right)\right)= \\
& =\left(Y_{1}^{\delta} \times Z_{1}\right) \cup\left(Y_{0}^{\delta} \times Z_{1}\right)=X \times Z_{1}=\alpha .
\end{aligned}
$$

Now, let $\beta_{1}=\left(\left(X \backslash Z_{1}\right) \times Z_{1}\right) \cup\left(Z_{1} \times \breve{D}\right)$, then $\beta_{1} \in B_{1}$ since $Z_{1} \neq \varnothing$ and $X \backslash Z_{1} \neq \varnothing$ by definition of the semi lattice D. So, the following equalities are hold:

$$
\begin{aligned}
& \delta \circ \beta_{1}=\left(\left(Y_{1}^{\delta} \times Z_{1} \beta_{1}\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \beta_{1}\right)\right)= \\
& =\left(Y_{1}^{\delta} \times \widetilde{D}\right) \cup\left(Y_{0}^{\delta} \times \breve{D}\right)=X \times \widetilde{D}=\alpha .
\end{aligned}
$$

Therefore, the elements $\alpha=X \times Z_{1}$ and $\alpha=X \times \breve{D}$ are generating by elements of the set B_{1}.
6) $Y_{1}^{\alpha}=Y_{0}^{\alpha}=\varnothing$, then $Y_{2}^{\alpha}=X$ since the representation of a binary relation α is quasinirmal. Of this we have, that $\alpha=\varnothing$.
Now let $\delta=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1}\right) \cup\left(Y_{0}^{\delta} \times \breve{D}\right)$ is any element of the set B (by preposition the inequality $|X| \geq 3$ is true). Further, by assumption we have, that $|X \backslash \breve{D}| \geq 1$. In this case, for the $\beta_{2}=(\breve{D} \times \varnothing) \cup((X \backslash \breve{D}) \times \breve{D})$ we

ISSN: 2319-5967

ISO 9001:2008 Certified

International Journal of Engineering Science and Innovative Technology (IJESIT)
 Volume 5, Issue 6, November 2016

have $\beta_{2} \in B_{2}$ and by statement a) of the lemma 2.4 binary relation β_{2} is generating by elements of the set B and

$$
\begin{aligned}
& \delta \circ \beta_{2}=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \beta_{2}\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \beta_{2}\right)= \\
& =\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times \varnothing\right) \cup\left(Y_{0}^{\delta} \times \varnothing\right)=X \times \varnothing=\varnothing
\end{aligned}
$$

So, B_{1}^{\prime} is generating set for the semi group $B_{X}(D)$.
By preposition $|X \backslash \breve{D}| \geq 1$ and we proved that the set B_{1}^{\prime} is irreducible.
Let $\alpha \in B_{1}^{\prime}$ and for the element α consider the following cases:
7) If $\alpha \in B$, then $\alpha \neq \sigma \circ \tau$ for all $\sigma, \tau \in B_{X}(D) \backslash\{\alpha\}$ since by statement d) of the Lemma 2.1 follows that B is a set external elements for the semi group $B_{X}(D)$. So, $\alpha \neq \sigma \circ \tau$ for all $\sigma, \tau \in B_{1}^{\prime} \backslash\{\alpha\}$ since $B_{1}^{\prime} \backslash\{\alpha\} \subseteq B_{X}(D) \backslash\{\alpha\}$.
Thus, we have that $\alpha \notin B$.
8) If $\alpha \in B_{1}$, then by definition of a set B_{1} the quasinormal representation of a binary relation α has a form $\alpha=\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$, where $Y_{1}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$. Further, let $\alpha=\delta \circ \beta$ for some $\delta, \beta \in B_{1}^{\prime} \backslash\{\alpha\}$ and for the element δ consider the following cases:
$\left.a^{\prime}\right) \delta \in B \backslash\{\alpha\}$ and $\beta \in B_{1}^{\prime} \backslash\{\alpha\}$. Then by definition of a set B the quasinormal representation of a binary relation δ has a form $\delta=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1}\right) \cup\left(Y_{0}^{\delta} \times \breve{D}\right)$, where $Y_{2}^{\delta}, Y_{1}^{\delta}, Y_{0}^{\delta} \notin\{\varnothing\}$ since $V\left(X^{*}, \delta\right)=D$ and

$$
\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)=\alpha=\delta \circ \beta=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \beta\right)
$$

But last equality is impossible since $Y_{2}^{\alpha} \notin\{\varnothing\}$.
So, we have that $\delta \notin B \backslash\{\alpha\}$.
b^{\prime}) If $\delta \in B_{1} \backslash\{\alpha\}$ and $\beta \in B_{1}^{\prime} \backslash\{\alpha\}$. Then by definition of a set B_{1} the quasinormal representation of a binary relation δ has a form $\delta=\left(Y_{1}^{\delta} \times Z_{1}\right) \cup\left(Y_{0}^{\delta} \times \breve{D}\right)$, where $Y_{1}^{\delta}, Y_{0}^{\delta} \notin\{\varnothing\}$ and

$$
\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)=\alpha=\delta \circ \beta=\left(Y_{1}^{\delta} \times Z_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \beta\right) .
$$

Last equalities are possible only if $Z_{1} \beta=Z_{1}, \breve{D} \beta=\breve{D}$ since $Z_{1} \subset \breve{D}$. Of this we obtain, that

$$
\alpha=\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)=\left(Y_{1}^{\delta} \times Z_{1}\right) \cup\left(Y_{0}^{\delta} \times \breve{D}\right)=\delta .
$$

But the equality $\alpha=\delta$ contradict the condition $\delta \in B_{1} \backslash\{\alpha\}$.
Thus, we have that $\delta \notin B_{1} \backslash\{\alpha\}$.
So, from the cases a^{\prime}) and b^{\prime}) follows that $\alpha \notin B_{1}$.
Therefore, $\alpha \neq \delta \circ \beta$ for any $\delta, \beta \in B_{1}^{\prime} \backslash\{\alpha\}$, i.e. the set $B_{1}^{\prime}=B \cup B_{1}$ is irreducible generating set for the semigroup $B_{X}(D)$.
Lemma 2.5 is proved.
Lemma 2.6. Let $|X| \geq 3, D=\left\{\varnothing, Z_{1}, \breve{D}\right\} \in \Sigma_{1}(X, 3)$ and

$$
\begin{aligned}
& B=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right)=D\right\}, B_{1}=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right)=\left\{Z_{1}, \breve{D}\right\}\right\}, \\
& \gamma_{0}=\left(Z_{1} \times \varnothing\right) \cup\left(\left(X \backslash Z_{1}\right) \times Z_{1}\right) .
\end{aligned}
$$

If $X=\breve{D}$, then the set $B_{2}^{\prime}=B \cup B_{1} \cup\left\{\gamma_{0}\right\}$ is irreducible generating set for the semigroup $B_{X}(D)$.
Proof. Let $|X| \geq 3, X=\breve{D}$. First we proved that every element of the semigroup $B_{X}(D)$ is generating by elements of the set $B_{2}^{\prime}=B \cup B_{1} \cup\left\{\gamma_{0}\right\}$. Indeed, let α be any element of the semigroup $B_{X}(D)$. Then quasinormal representation of a binary relation α has a form

ISSN: 2319-5967

ISO 9001:2008 Certified

For a sets $Y_{2}^{\alpha}, Y_{1}^{\alpha}$ and Y_{0}^{α} we consider the following cases.

1) $Y_{2}^{\alpha}, Y_{1}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$. Then we have $V\left(X^{*}, \alpha\right)=D$, i.e. $\alpha \in B$;
2) $Y_{2}^{\alpha}=\varnothing \quad Y_{1}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$. Then quasinormal representation of a binary relation α has a form $\alpha=\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$, i.e. $\alpha \in B_{1}$;
3) $Y_{1}^{\alpha}=\varnothing \quad Y_{2}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$. Then quasinormal representation of a binary relation α has a form $\alpha=\left(Y_{2}^{\alpha} \times \varnothing\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right) \in B_{2}$ and by statement $\left.c\right)$ of the Lemma 2.4 we have that the elements of the set B_{2} are generating of elements of the set $B_{1} \cup\left\{\gamma_{0}\right\}$.
4) $Y_{0}^{\alpha}=\varnothing \quad Y_{2}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$. Then quasinormal representation of a binary relation α has a form $\alpha=\left(Y_{2}^{\alpha} \times \varnothing\right) \cup\left(Y_{1}^{\alpha} \times Z_{1}\right) \in B_{3}$. Then by statement $\left.b\right)$ of the lemma 2.4 follows that elements of the set B_{3} are generating by elements of the set $B \cup B_{1} \cup\left\{\gamma_{0}\right\}$;
5) If $Y_{2}^{\alpha}=Y_{0}^{\alpha}=\varnothing, Y_{1}^{\alpha} \neq \varnothing$ or $Y_{2}^{\alpha}=Y_{1}^{\alpha}=\varnothing, Y_{0}^{\alpha} \neq \varnothing$. Then quasinormal representtation of a binary relation α has a form $\alpha=X \times Z_{1}$, or $\alpha=X \times \breve{D}$.
If $\delta_{0}=\left(\left(X \backslash Z_{1}\right) \times Z_{1}\right) \cup\left(Z_{1} \times \breve{D}\right)$ and $\delta_{1}=\left(Z_{1} \times Z_{1}\right) \cup\left(\left(X \backslash Z_{1}\right) \times \breve{D}\right)$, then $\delta_{0}, \delta_{1} \in B_{1}$ since $\left|Z_{1}\right| \geq 1$ and $\left|X \backslash Z_{1}\right| \geq 1$ by definition of the semilattice $D\left(\varnothing \subset Z_{1} \subset \breve{D}\right)$ and

$$
\begin{aligned}
& \delta_{0} \circ \gamma_{0}=\left(\left(X \backslash Z_{1}\right) \times \varnothing\right) \cup\left(Z_{1} \times Z_{1}\right)=\gamma_{1} \\
& \delta_{1} \circ \gamma_{1}=\left(Z_{1} \times Z_{1} \gamma_{1}\right) \cup\left(\left(X \backslash Z_{1}\right) \times \widetilde{D} \gamma_{1}\right)= \\
& \quad=\left(Z_{1} \times Z_{1}\right) \cup\left(\left(X \backslash Z_{1}\right) \times Z_{1}\right)=X \times Z_{1}=\alpha, \\
& \delta_{0} \circ \delta_{0}=\left(\left(X \backslash Z_{1}\right) \times Z_{1} \delta_{0}\right) \cup\left(Z_{1} \times \widetilde{D} \delta_{0}\right)= \\
& \quad=\left(\left(X \backslash Z_{1}\right) \times \widetilde{D}\right) \cup\left(Z_{1} \times \widetilde{D}\right)=X \times \widetilde{D}=\alpha .
\end{aligned}
$$

So, the elements $\alpha=X \times Z_{1}$ and $\alpha=X \times \breve{D}$ are generating by elements of the set $B_{1} \cup\left\{\gamma_{0}\right\}$.
6) $Y_{1}^{\alpha}=Y_{0}^{\alpha}=\varnothing$. Then $Y_{2}^{\alpha}=X$ since the representation of the binary relation α is quasinormal. Then $\alpha=\varnothing$ and

$$
\begin{aligned}
& \gamma_{0} \circ \gamma_{0}=\left(\left(Z_{1} \times \varnothing\right) \cup\left(\left(X \backslash Z_{1}\right) \times Z_{1}\right)\right) \circ \gamma_{0}=\left(Z_{1} \times \varnothing \gamma_{0}\right) \cup\left(\left(X \backslash Z_{1}\right) \times Z_{1} \gamma_{0}\right)= \\
& =\left(Z_{1} \times \varnothing\right) \cup\left(\left(X \backslash Z_{1}\right) \times \varnothing\right)=X \times \varnothing=\varnothing
\end{aligned}
$$

Thus, we have that the binary relation $\alpha=\varnothing$ is generating by elements of the set B_{2}^{\prime}.
So, $B_{2}^{\prime}=B \cup B_{1} \cup\left\{\gamma_{0}\right\}$ is generating set for the semigroup $B_{X}(D)$.
Now, let $|X| \geq 3, X=\breve{D}$ and we proved that the set $B_{2}^{\prime}=B \cup B_{1} \cup\left\{\gamma_{1}\right\}$ is irreducible. For the element $\alpha \in B_{2}^{\prime}$ consider the following cases.
7) If $\alpha \in B$, then $\alpha \neq \sigma \circ \tau$ for all $\sigma, \tau \in B_{X}(D) \backslash\{\alpha\}$ since by statement d) of the Lemma 2.1 follows that B is a set external elements for the semigroup $B_{X}(D)$. So, $\alpha \neq \sigma \circ \tau$ for all $\sigma, \tau \in B_{2}^{\prime} \backslash\{\alpha\}$ since $B_{2}^{\prime} \backslash\{\alpha\} \subseteq B_{X}(D) \backslash\{\alpha\}$.
Thus we have $\alpha \notin B$.
8) Let $\alpha \in B_{1}$, then by definition of a set B_{1} the quasinormal representation of a binary relation α has a form $\alpha=\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$, where $Y_{1}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$. Further, let $\alpha=\delta \circ \beta$ for some $\delta, \beta \in B_{2}^{\prime} \backslash\{\alpha\}$.

For the element δ consider the following cases:
a^{\prime}) If $\delta \in B \backslash\{\alpha\}$ and $\beta \in B_{2}^{\prime} \backslash\{\alpha\}$. Then by definition of a set B the quasinormal representation of a binary relation δ has a form $\delta=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1}\right) \cup\left(Y_{0}^{\delta} \times \breve{D}\right)$, where $Y_{2}^{\delta}, Y_{1}^{\delta}, Y_{0}^{\delta} \notin\{\varnothing\}$ since $V\left(X^{*}, \delta\right)=D$ and

ISSN: 2319-5967

ISO 9001:2008 Certified

International Journal of Engineering Science and Innovative Technology (IJESIT)
Volume 5, Issue 6, November 2016

$$
\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)=\alpha=\delta \circ \beta=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \beta\right) .
$$

But last equality is impossible since $Y_{2}^{\delta} \notin\{\varnothing\}$.
So, we have that $\delta \notin B \backslash\{\alpha\}$.
$\left.b^{\prime}\right)$ If $\delta \in B_{1} \backslash\{\alpha\}$ and $\beta \in B_{2}^{\prime} \backslash\{\alpha\}$. Then by definition of a set B_{1} the quasinormal representation of a binary relation δ has a form $\delta=\left(Y_{1}^{\delta} \times Z_{1}\right) \cup\left(Y_{0}^{\delta} \times \breve{D}\right)$, where $Y_{1}^{\delta}, Y_{0}^{\delta} \notin\{\varnothing\}$ and

$$
\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)=\alpha=\delta \circ \beta=\left(Y_{1}^{\delta} \times Z_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \beta\right) .
$$

Last equality is possible only if $Z_{1}=Z_{1} \beta$ and $\breve{D}=\breve{D} \beta$ since $Z_{1} \subset \breve{D}$, i.e.

$$
\alpha=\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)=\left(Y_{1}^{\delta} \times Z_{1}\right) \cup\left(Y_{0}^{\delta} \times \breve{D}\right)=\delta .
$$

We have $\alpha=\delta$, which contradict the condition $\delta \in B_{1} \backslash\{\alpha\}$.
Thus, we have that $\delta \notin B_{1} \backslash\{\alpha\}$.
$\left.c^{\prime}\right)$ If $\delta=\gamma_{0}$ and $\beta \in B_{2}^{\prime} \backslash\{\alpha\}$, then $\delta=\left(Z_{1} \times \varnothing\right) \cup\left(\left(X \backslash Z_{1}\right) \times Z_{1}\right)$ and $\delta \neq \alpha$, i.e.

$$
\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)=\alpha=\delta \circ \beta=\left(Z_{1} \times \varnothing\right) \cup\left(\left(X \backslash Z_{1}\right) \times Z_{1} \beta\right) .
$$

But last equalities is impossible since $Y_{1}^{\alpha}, Z_{1} \notin\{\varnothing\}$.
Thus, we have that $\delta \neq \gamma_{0}$.
Of the cases $\left.\left.a^{\prime}\right), b^{\prime}\right)$ and $\left.c^{\prime}\right)$ follows that $\alpha \notin B_{1}$.
9) $\alpha=\gamma_{0}=\left(Z_{1} \times \varnothing\right) \cup\left(\left(X \backslash Z_{1}\right) \times Z_{1}\right)$. Further, let $\alpha=\delta \circ \beta$ for some $\delta, \beta \in B_{2}^{\prime} \backslash\left\{\gamma_{0}\right\}$.

For the element δ consider the following cases:
a^{\prime}) If $\delta \in B \backslash\left\{\gamma_{0}\right\}$ and $\beta \in B_{2}^{\prime} \backslash\left\{\gamma_{0}\right\}$. Then by definition of a set B the quasinormal representation of a binary relation δ has a form $\delta=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1}\right) \cup\left(Y_{0}^{\delta} \times \breve{D}\right)$, where $Y_{2}^{\delta}, Y_{1}^{\delta}, Y_{0}^{\delta} \notin\{\varnothing\}$ since $V\left(X^{*}, \delta\right)=D$ and

$$
\left(Z_{1} \times \varnothing\right) \cup\left(\left(X \backslash Z_{1}\right) \times Z_{1}\right)=\alpha=\delta \circ \beta=\left(Y_{2}^{\delta} \times \varnothing\right) \cup\left(Y_{1}^{\delta} \times Z_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \beta\right)
$$

Last equalities is possible only if $Z_{1} \beta=\varnothing, Z_{1}=\breve{D} \beta$ or $Z_{1}=Z_{1} \beta=\breve{D} \beta$.
If $Z_{1} \beta=\varnothing, Z_{1}=\breve{D} \beta$, then by statement a) of the Lemma 2.2 follows that $|X \backslash \breve{D}| \geq 1$. But, the inequality $|X \backslash \breve{D}| \geq 1$ contradict the equality $X=\breve{D}$.
If $Z_{1}=Z_{1} \beta=\breve{D} \beta$, then by statement b) of the Lemma 2.2 follows that $|X \backslash \breve{D}| \geq 1$. But, the inequality $|X \backslash \breve{D}| \geq 1$ contradict the equality $X=\breve{D}$.
Thus, in case $\left.a^{\prime}\right)$ we have that $\delta \notin B \backslash\left\{\gamma_{0}\right\}$.
b^{\prime}) If $\delta \in B_{1} \backslash\left\{\gamma_{0}\right\}$ and $\beta \in B_{2}^{\prime} \backslash\left\{\gamma_{0}\right\}$. Then by definition of a set B_{1} the quasinormal representation of a binary relation δ has a form $\delta=\left(Y_{1}^{\delta} \times Z_{1}\right) \cup\left(Y_{0}^{\delta} \times \breve{D}\right)$, where $Y_{1}^{\delta}, Y_{0}^{\delta} \notin\{\varnothing\}$ and

$$
\left(Z_{1} \times \varnothing\right) \cup\left(\left(X \backslash Z_{1}\right) \times Z_{1}\right)=\alpha=\delta \circ \beta=\left(Y_{1}^{\delta} \times Z_{1} \beta\right) \cup\left(Y_{0}^{\delta} \times \breve{D} \beta\right) .
$$

Last equality is possible only if $Z_{1} \beta=\varnothing$ and $\breve{D} \beta=Z_{1}$ since $Z_{1} \subset \breve{D}$.
If $Z_{1} \beta=\varnothing$ and $\breve{D} \beta=Z_{1}$ for some $\beta \in B$, then by statement a) of the Lemma 2.2 we have $|X \backslash \breve{D}| \geq 1$. But last inequality contradict the condition $X=\breve{D}$.
Thus we have that $\delta \notin B_{1} \backslash\left\{\gamma_{0}\right\}$.
Of the cases $\left.a^{\prime}\right), b^{\prime}$) follows that $\alpha \neq \gamma_{0}$.

ISSN: 2319-5967
ISO 9001:2008 Certified
International Journal of Engineering Science and Innovative Technology (IJESIT)
Volume 5, Issue 6, November 2016
Therefore, $\alpha \neq \delta \circ \beta$ for any $\delta, \beta \in B_{2}^{\prime} \backslash\{\alpha\}$, i.e. the set $B_{2}^{\prime}=B \cup B_{1} \cup\left\{\gamma_{0}\right\}$ is irreducible generating set for the semigroup $B_{X}(D)$.
Lemma 2.6 is proved.
Lemma 2.7. Let $|X|=2, \quad D=\left\{\varnothing, Z_{1}, \breve{D}\right\} \in \Sigma_{1}(X, 3)$. Then $B=\varnothing$ and the set $B_{3}^{\prime}=B_{1} \cup\left\{\gamma_{0}\right\}$ is irreducible generating set for the semigroup $B_{X}(D)$.
Proof. Let $X=\breve{D}$ and $|X|=2$. Then $B_{X}(D)=\left\{\gamma_{0}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{8}\right\}$, where

$$
\begin{aligned}
& \gamma_{0}=\left(Z_{1} \times \varnothing\right) \cup\left(\left(X \backslash Z_{1}\right) \times Z_{1}\right)=\left(X \backslash Z_{1}\right) \times Z_{1}, \\
& \alpha_{1}=\left(Z_{1} \times Z_{1}\right) \cup\left(\left(X \backslash Z_{1}\right) \times \breve{D}\right), \alpha_{2}=\left(\left(X \backslash Z_{1}\right) \times Z_{1}\right) \cup\left(Z_{1} \times \breve{D}\right), \\
& \alpha_{3}=X \times \varnothing=\varnothing, \alpha_{4}=\left(\left(X \backslash Z_{1}\right) \times \varnothing\right) \cup\left(Z_{1} \times Z_{1}\right)=Z_{1} \times Z_{1}, \\
& \alpha_{5}=\left(Z_{1} \times \varnothing\right) \cup\left(\left(X \backslash Z_{1}\right) \times \breve{D}\right)=\left(X \backslash Z_{1}\right) \times \breve{D}, \\
& \alpha_{6}=\left(\left(X \backslash Z_{1}\right) \times \varnothing\right) \cup\left(Z_{1} \times \breve{D}\right)=Z_{1} \times \breve{D}, \alpha_{7}=X \times Z_{1}, \alpha_{8}=X \times \breve{D} .
\end{aligned}
$$

In this case we have: $B=\varnothing, X=\breve{D}, B_{1}=\left\{\alpha_{1}, \alpha_{2}\right\}$ and $B_{3}^{\prime}=B_{1} \cup\left\{\gamma_{0}\right\}$ is generating set for the semigroup $B_{X}(D)$. Indeed:

\circ	γ_{0}	α_{1}	α_{2}
γ_{0}	α_{3}	γ_{0}	α_{5}
α_{1}	γ_{0}	α_{1}	α_{8}
α_{2}	α_{4}	α_{2}	α_{8}

where $\alpha_{2} \circ\left(\gamma_{0} \circ \alpha_{2}\right)=\alpha_{2} \circ \alpha_{5}=\alpha_{6}$ and $\left(\alpha_{1} \circ \alpha_{2}\right) \circ \gamma_{0}=\alpha_{8} \circ \gamma_{0}=\alpha_{7}$. Of the last conditions and from the Lemma 2.6 we obtain that B_{3}^{\prime} is irreducible generating set for the semigroup $B_{X}(D)$.

Lemma 2.7 is proved.
Theorem 2.2. Let $|X| \geq 3, D=\left\{\varnothing, Z_{1}, \breve{D}\right\} \in \Sigma_{1}(X, 3)$. If

$$
\begin{aligned}
& B=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right)=D\right\}, B_{1}=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right)=\left\{Z_{1}, \breve{D}\right\}\right\}, \\
& \gamma_{0}=\left(Z_{1} \times \varnothing\right) \cup\left(\left(X \backslash Z_{1}\right) \times Z_{1}\right) .
\end{aligned}
$$

Then the following statements are true:
a) if $|X \backslash \breve{D}| \geq 1$. Then the set $B \cup B_{1}$ is irreducible generating set for the semigroup $B_{X}(D)$;
b) if $X=\breve{D}$, then the set $B \cup B_{1} \cup\left\{\gamma_{0}\right\}$ is irreducible generating set for the semigroup $B_{X}(D)$.
c) if $|X|=2$, then the set $B_{1} \cup\left\{\gamma_{0}\right\}$ is irreducible generating set for the semigroup $B_{X}(D)$.

Proof. The statements a), b) and c) immediately follows from the Lemma 2.5, 2.6 and 2.7 respectively.
Theorem 2.3. Let $D=\left\{\varnothing, Z_{1}, \breve{D}\right\} \in \Sigma_{1}(X, 3)$. If X is finite a set and $|X|=n$, then the following statements are true:
a) if $|X \backslash \breve{D}| \geq 1$, then the number $\left|B \cup B_{1}\right|$ of a set $B \cup B_{1}$ is equal to

$$
\left|B \cup B_{1}\right|=3^{n}-2^{n+1}+1 ;
$$

b) if $|X| \geq 3, X=\breve{D}, \gamma_{0}=\left(Z_{1} \times \varnothing\right) \cup\left(\left(X \backslash Z_{1}\right) \times Z_{1}\right)$, then the number $\left|B \cup B_{1} \cup\left\{\gamma_{0}\right\}\right|$ of a set $B \cup B_{1} \cup\left\{\gamma_{0}\right\}$ is equal to

$$
\left|B \cup B_{1} \cup\left\{\gamma_{1}\right\}\right|=3^{n}-2^{n+1}+2 ;
$$

c) if $|X|=2$, then then the number $\left|B_{1} \cup\left\{\gamma_{1}, \gamma_{2}\right\}\right|$ of a set $B_{1} \cup\left\{\gamma_{0}\right\}$ is equal to

$$
\left|B_{1} \cup\left\{\gamma_{0}\right\}\right|=3
$$

Proof. Let $B=\left\{\alpha \in B_{X}(D) \mid V\left(X^{*}, \alpha\right)=D\right\}$ and

ISSN: 2319-5967

ISO 9001:2008 Certified

International Journal of Engineering Science and Innovative Technology (IJESIT)
Volume 5, Issue 6, November 2016

$$
\begin{aligned}
& \varphi_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), \varphi_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), \varphi_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right), \\
& \varphi_{4}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), \varphi_{5}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right), \varphi_{6}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right) .
\end{aligned}
$$

If $\alpha \in B$, then quasinormal representation of a binary relation α has a form $\alpha=\left(Y_{\varphi_{j}(1)}^{\alpha} \times \varnothing\right) \cup\left(Y_{\varphi_{j}(2)}^{\alpha} \times Z_{1}\right) \cup\left(Y_{\varphi_{j}(3)}^{\alpha} \times \breve{D}\right)$, where $j=1,2, \ldots, 5,6$ and \quad a system of subsets $Y_{\varphi_{j}(1)}^{\alpha}, Y_{\varphi_{j}(2)}^{\alpha}, Y_{\varphi_{j}(3)}^{\alpha} \notin\{\varnothing\}$ of the set X is partitioning of the set X. Then the number k_{n}^{3} partitioning $Y_{\varphi_{j}(1)}^{\alpha}, Y_{\varphi_{j}(2)}^{\alpha}, Y_{\varphi_{j}(3)}^{\alpha}$ of the set X for fixed $j(1 \leq j \leq 6)$ is equal to

$$
k_{n}^{3}=\sum_{i=1}^{3} \frac{(-1)^{3+i}}{(i-1)!(3-i)!} \cdot i^{n-1}=\frac{1}{2} \cdot 3^{n-1}-2^{n-1}+\frac{1}{2}
$$

(see [1], Theorem 1.17.1). Of this obtain that $|B|=6 \cdot k_{n}^{3}=3^{n}-3 \cdot 2^{n}+3$.
If $\alpha \in B_{1}$, then quasinormal representation of a binary relation α has a form $\alpha=\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$, where a system $Y_{1}^{\alpha}, Y_{0}^{\alpha}$ is partitioning of the set X. By definition of a set B_{1} we obtain $B_{1}=B_{X}\left(D^{\prime}\right) \backslash\left\{X \times Z_{1}, X \times \breve{D}\right\}$, where $D^{\prime}=\left\{Z_{1}, \breve{D}\right\}$. So, we have, $\left|B_{1}\right|=\left|B_{X}\left(D^{\prime}\right)\right|-2=2^{|X|}-2=2^{n}-2$. By definition of a sets B, B_{1} and $\left\{\gamma_{0}\right\}$ follows that $B \cap B_{1}=B \cap\left\{\gamma_{0}\right\}=B_{1} \cap\left\{\gamma_{0}\right\}=\varnothing$. Of this we obtain that:

$$
\left|B \cup B_{1}\right|=\left(3^{n}-3 \cdot 2^{n}+3\right)+\left(2^{n}-2\right)=3^{n}-2^{n+1}+1,
$$

if $|X \backslash \breve{D}| \geq 1$;

$$
\left|B \cup B_{1} \cup\left\{\gamma_{0}\right\}\right|=\left(3^{n}-2^{n+1}+1\right)+1=3^{n}-2^{n+1}+2,
$$

if $|X| \geq 3, X=\breve{D}$;

$$
\left|B_{1} \cup\left\{\gamma_{0}\right\}\right|=2^{|2|}-2+1=3,
$$

if $|X|=2$.
Theorem 2.3 is proved.
Example 2.1. Let $\quad X=\{1,2,3\}, \quad Z_{1}=\{1\}, \quad \breve{D}=\{1,2\}, \quad D=\left\{\varnothing, Z_{1}, \breve{D}\right\} \quad$ and $\quad|X \backslash \breve{D}|=1 . \quad$ Then $B_{X}(D)=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{27}\right\}$, where

$$
\begin{aligned}
& \alpha_{1}=\left(Z_{1} \times \varnothing\right) \cup\left(\left(\breve{D} \backslash Z_{1}\right) \times Z_{1}\right) \cup((X \backslash \breve{D}) \times \widetilde{D}), \\
& \alpha_{2}=\left(Z_{1} \times \varnothing\right) \cup\left((X \backslash \widetilde{D}) \times Z_{1}\right) \cup\left(\left(\widetilde{D} \backslash Z_{1}\right) \times \widetilde{D}\right), \\
& \alpha_{3}=\left(\left(\widetilde{D} \backslash Z_{1}\right) \times \varnothing\right) \cup\left(Z_{1} \times Z_{1}\right) \cup((X \backslash \widetilde{D}) \times \widetilde{D}), \\
& \alpha_{4}=\left(\left(\widetilde{D} \backslash Z_{1}\right) \times \varnothing\right) \cup\left((X \backslash \widetilde{D}) \times Z_{1}\right) \cup\left(Z_{1} \times \widetilde{D}\right), \\
& \alpha_{5}=((X \backslash \widetilde{D}) \times \varnothing) \cup\left(\left(\widetilde{D} \backslash Z_{1}\right) \times Z_{1}\right) \cup\left(Z_{1} \times \widetilde{D}\right), \\
& \alpha_{6}=((X \backslash \widetilde{D}) \times \varnothing) \cup\left(Z_{1} \times Z_{1}\right) \cup\left(\left(\widetilde{D} \backslash Z_{1}\right) \times \widetilde{D}\right), \\
& \alpha_{7}=\left(Z_{1} \times Z_{1}\right) \cup(\{2,3\} \times \widetilde{D}), \alpha_{8}=\left(\left(\widetilde{D} \backslash Z_{1}\right) \times Z_{1}\right) \cup(\{1,3\} \times \widetilde{D}), \\
& \alpha_{9}=\left((X \backslash \widetilde{D}) \times Z_{1}\right) \cup(\widetilde{D} \times \widetilde{D}), \alpha_{10}=\left(\widetilde{D} \times Z_{1}\right) \cup((X \backslash \widetilde{D}) \times \widetilde{D}), \\
& \alpha_{11}=\left(\{1,3\} \times Z_{1}\right) \cup\left(\left(\widetilde{D} \backslash Z_{1}\right) \times \widetilde{D}\right), \alpha_{12}=\left(\{2,3\} \times Z_{1}\right) \cup\left(Z_{1} \times \widetilde{D}\right), \\
& \alpha_{13}=(\widetilde{D} \times \varnothing) \cup\left((X \backslash \widetilde{D}) \times Z_{1}\right), \alpha_{14}=((X \backslash \widetilde{D}) \times \varnothing) \cup\left(\widetilde{D} \times Z_{1}\right), \\
& \alpha_{15}=(\widetilde{D} \times \varnothing) \cup((X \backslash \widetilde{D}) \times \widetilde{D}), \alpha_{16}=(\{1,3\} \times \varnothing) \cup\left(\left(\widetilde{D} \backslash Z_{1}\right) \times \widetilde{D}\right), \\
& \alpha_{17}=(\{2,3\} \times \varnothing) \cup\left(Z_{1} \times \widetilde{D}\right), \alpha_{18}=\left(\left(\widetilde{D} \backslash Z_{1}\right) \times \varnothing\right) \cup(\{1,3\} \times \widetilde{D}), \\
& \alpha_{19}=((X \backslash \widetilde{D}) \times \varnothing) \cup(\widetilde{D} \times \widetilde{D}), \alpha_{20}=\left(Z_{1} \times \varnothing\right) \cup(\{2,3\} \times \widetilde{D}), \\
& \alpha_{21}=(\{1,3\} \times \varnothing) \cup\left(\left(\widetilde{D} \backslash Z_{1}\right) \times Z_{1}\right), \alpha_{22}=\left(Z_{1} \times \varnothing\right) \cup\left(\{2,3\} \times Z_{1}\right), \\
& \alpha_{23}=(\{2,3\} \times \varnothing) \cup\left(Z_{1} \times Z_{1}\right), \alpha_{24}=\left(\left(\widetilde{D} \backslash Z_{1}\right) \times \varnothing\right) \cup\left(\{1,3\} \times Z_{1}\right), \\
& \alpha_{25}=\varnothing, \alpha_{26}=\{1,2,3\} \times Z_{1}, \alpha_{27}=\{1,2,3\} \times \widetilde{D} .
\end{aligned}
$$

ISSN: 2319-5967
ISO 9001:2008 Certified
International Journal of Engineering Science and Innovative Technology (IJESIT)
Volume 5, Issue 6, November 2016
$B=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{6}\right\}, B_{1}=\left\{\alpha_{7}, \alpha_{8}, \ldots, \alpha_{12}\right\}$ and $\left|B \cup B_{1}\right|=12$.

	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}	α_{8}	α_{9}	α_{10}	α_{11}	α_{12}
α_{1}	α_{13}	α_{15}	α_{22}	α_{20}	α_{20}	α_{1}	α_{1}	α_{20}	α_{20}	α_{22}	α_{1}	α_{20}
α_{2}	α_{21}	α_{16}	α_{22}	α_{20}	α_{20}	α_{2}	α_{2}	α_{20}	α_{20}	α_{22}	α_{2}	α_{20}
α_{3}	α_{13}	α_{15}	α_{24}	α_{18}	α_{18}	α_{18}	α_{3}	α_{18}	α_{18}	α_{24}	α_{3}	α_{18}
α_{4}	α_{23}	α_{17}	α_{24}	α_{18}	α_{18}	α_{4}	α_{4}	α_{18}	α_{18}	α_{24}	α_{4}	α_{18}
α_{5}	α_{23}	α_{17}	α_{14}	α_{19}	α_{19}	α_{5}	α_{5}	α_{19}	α_{19}	α_{14}	α_{5}	α_{19}
α_{6}	α_{21}	α_{16}	α_{14}	α_{19}	α_{19}	α_{6}	α_{6}	α_{19}	α_{19}	α_{14}	α_{6}	α_{19}
α_{7}	α_{22}	α_{20}	α_{26}	α_{27}	α_{27}	α_{7}	α_{7}	α_{27}	α_{27}	α_{27}	α_{7}	α_{27}
α_{8}	α_{24}	α_{24}	α_{26}	α_{27}	α_{27}	α_{8}	α_{8}	α_{27}	α_{27}	α_{26}	α_{8}	α_{27}
α_{9}	α_{14}	α_{19}	α_{26}	α_{9}	α_{27}	α_{9}	α_{9}	α_{27}	α_{27}	α_{26}	α_{9}	α_{27}
α_{10}	α_{13}	α_{15}	α_{26}	α_{27}	α_{27}	α_{10}	α_{10}	α_{27}	α_{27}	α_{26}	α_{10}	α_{27}
α_{11}	α_{21}	α_{16}	α_{26}	α_{27}	α_{27}	α_{11}	α_{11}	α_{27}	α_{27}	α_{26}	α_{11}	α_{27}
α_{12}	α_{17}	α_{23}	α_{26}	α_{27}	α_{27}	α_{12}	α_{12}	α_{27}	α_{27}	α_{26}	α_{12}	α_{27}

In this case we have $\alpha_{2} \circ \alpha_{3} \circ \alpha_{2}=\alpha_{22} \circ \alpha_{2}=\alpha_{25}$, i.e. the set $B \cup B_{1}$ is irreducible generated set for the semi group $B_{X}(D)$.

Example 2.2. Let $X=\{1,2,3\}=\breve{D}, \quad Z_{1}=\{1,2\}, \quad D=\left\{\varnothing, Z_{1}, \breve{D}\right\} \quad X=\breve{D}$. Then $B_{X}(D)=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{27}\right\}$, where

$$
\begin{aligned}
& \alpha_{1}=(\{1\} \times \varnothing) \cup\left(\{2\} \times Z_{1}\right) \cup(\{3\} \times \breve{D}), \alpha_{2}=(\{1\} \times \varnothing) \cup\left(\{3\} \times Z_{1}\right) \cup(\{2\} \times \breve{D}), \\
& \alpha_{3}=(\{2\} \times \varnothing) \cup\left(\{1\} \times Z_{1}\right) \cup(\{3\} \times \breve{D}), \alpha_{4}=(\{2\} \times \varnothing) \cup\left(\{3\} \times Z_{1}\right) \cup(\{1\} \times \breve{D}), \\
& \alpha_{5}=(\{3\} \times \varnothing) \cup\left(\{2\} \times Z_{1}\right) \cup(\{1\} \times \breve{D}), \alpha_{6}=(\{3\} \times \varnothing) \cup\left(\{1\} \times Z_{1}\right) \cup(\{2\} \times \breve{D}), \\
& \alpha_{7}=\left(\{1\} \times Z_{1}\right) \cup(\{2,3\} \times \breve{D}), \alpha_{8}=\left(\{2\} \times Z_{1}\right) \cup(\{1,3\} \times \breve{D}), \\
& \alpha_{9}=\left(\{3\} \times Z_{1}\right) \cup\left(Z_{1} \times \breve{D}\right), \alpha_{10}=\left(Z_{1} \times Z_{1}\right) \cup(\{3\} \times \breve{D}), \\
& \alpha_{11}=\left(\{1,3\} \times Z_{1}\right) \cup(\{2\} \times \breve{D}), \alpha_{12}=\left(\{2,3\} \times Z_{1}\right) \cup(\{1\} \times \breve{D}), \\
& \alpha_{13}=(\{3\} \times \varnothing) \cup\left(Z_{1} \times Z_{1}\right), \alpha_{14}=\left(Z_{1} \times \varnothing\right) \cup(\{3\} \times \breve{D}), \\
& \alpha_{15}=\left(Z_{1} \times \varnothing\right) \cup\left(\{3\} \times Z_{1}\right)=\gamma_{0}, \alpha_{16}=(\{1,3\} \times \varnothing) \cup(\{2\} \times \breve{D}), \\
& \alpha_{17}=(\{2,3\} \times \varnothing) \cup(\{1\} \times \breve{D}), \alpha_{18}=(\{2\} \times \varnothing) \cup(\{1,3\} \times \breve{D}), \\
& \alpha_{19}=(\{3\} \times \varnothing) \cup\left(Z_{1} \times \breve{D}\right), \alpha_{20}=(\{1\} \times \varnothing) \cup(\{2,3\} \times \breve{D}), \\
& \alpha_{21}=(\{1,3\} \times \varnothing) \cup\left(\{2\} \times Z_{1}\right), \alpha_{22}=(\{1\} \times \varnothing) \cup\left(\{2,3\} \times Z_{1}\right), \\
& \alpha_{23}=(\{2,3\} \times \varnothing) \cup\left(\{1\} \times Z_{1}\right), \alpha_{24}=(\{2\} \times \varnothing) \cup\left(\{1,3\} \times Z_{1}\right), \\
& \alpha_{25}=\varnothing, \alpha_{26}=\{1,2,3\} \times Z_{1}, \alpha_{27}=\{1,2,3\} \times \breve{D} . \\
& B=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{6}\right\}, B_{1}=\left\{\alpha_{7}, \alpha_{8}, \ldots, \alpha_{12}\right\}, \gamma_{0}=\alpha_{15} \text { and }\left|B \cup B_{1} \cup\left\{\gamma_{0}\right\}\right|=13 .
\end{aligned}
$$

ISSN: 2319-5967
ISO 9001:2008 Certified
International Journal of Engineering Science and Innovative Technology (IJESIT)

α_{8}	α_{8}	α_{27}	α_{8}	α_{8}	α_{8}	α_{27}	α_{27}	α_{8}	α_{27}	α_{8}	α_{7}	α_{27}	α_{22}
α_{9}	α_{9}	α_{27}	α_{9}	α_{27}	α_{27}	α_{27}	α_{27}	α_{27}	α_{9}	α_{26}	α_{27}	α_{27}	α_{13}
α_{10}	α_{10}	α_{9}	α_{10}	α_{27}	α_{27}	α_{27}	α_{27}	α_{27}	α_{27}	α_{10}	α_{27}	α_{27}	γ_{0}
α_{11}	α_{11}	α_{19}	α_{11}	α_{27}	α_{27}	α_{27}	α_{27}	α_{27}	α_{27}	α_{11}	α_{27}	α_{27}	α_{21}
α_{12}	α_{12}	α_{27}	α_{12}	α_{27}	α_{27}	α_{27}	α_{27}	α_{27}	α_{27}	α_{12}	α_{27}	α_{27}	α_{23}
γ_{0}	γ_{0}	α_{14}	γ_{0}	α_{14}	α_{25}								

In this case we have: $\alpha_{11} \circ \alpha_{15} \circ \alpha_{9}=\alpha_{11} \circ \alpha_{14}=\alpha_{16}$ and $\alpha_{3} \circ \alpha_{9} \circ \alpha_{15}=\alpha_{18} \circ \alpha_{15}=\alpha_{24}$, i.e. the set $B \cup B_{1} \cup\left\{\gamma_{0}\right\}$ is irreducible generated set for the semi group $B_{X}(D)$.

REFERENCES

[1] Yasha Diasamidze, Shota Makharadze. Complete semigroups of binary relations. Turkey, Kriter, 2013, 1-519.
[2] Yasha Diasamidze, Neşet Aydin, Ali Erdoğan. Generating Set of the Complete Semigroups of Binary Relations. Applied Mathematics, 2016, 7, 98-107.
[3] Yasha Diasamidze, Shota Makharadze. Complete semigroups of binary relations defined by elementary and nodal X - semilattices of unions. Journal of Mathematical Sciences, 111, no.1, 2002, Plenum Publ. Corp., New York, 3171-3226.
[4] Yasha Diasamidze, Temuri Sirabidze. Complete semigroups of binary relations defined by three-element X - chains. Journal of Mathematical Sciences, 117, no. 4, 2003, Plenum Publ. Corp., New York, 2003, 4320-4350 .
[5] Omar Givradze. Irreducible Generating Sets of Complete Semigroups of Unions $B_{X}(D)$ Defined by Semilattices of Class $\Sigma_{2}(X, 4)$. Journal of Mathematical Sciences, 186, no. 5, 2012, 745-750.
[6] Omar Givradze. Irreducible Generating sets of Complete Semigroups of Unions. Journal of Mathematical Sciences, 197, no.6, 2014, 755-760.
[7] Aleko bakuridze, Yasha Diasamidze, Omar Givradze. Generate Sets of the Complete Semigroups Binary Relations Defined by Semilattices of the Class $\Sigma_{1}(X, 2)$. (to appear).

