GENERATED SETS OF THE COMPLETE SEMIGROUP BINARI RELATIONS DEFINED BY SEMILATTICES OF THE CLASS \(\Sigma_1(X,2) \)

Alexander Bakuridze

Faculty of Physics, Mathematics and Computer Sciences, Department of Mathematics, Shota Rustaveli Batumi State University, 35 Ninoshvili St., Batumi 6010, Georgia

Abstract. In this article, we study generated sets of the complete semigroup \(B_X(D) \) defined by an \(X - \) semi lattice \(D \) of the class \(\Sigma_1(X,2) \).

Key words: Semi group, semi lattice, binary relation.

I. INTRODUCTION

1.1. Let \(X \) be an arbitrary nonempty set, \(D \) is an \(X - \) semilattice of unions which closed with respect to the set-theoretic union of elements from \(D \), \(f \) be an arbitrary mapping of the set \(X \) in the set \(D \). To each mapping \(f \) we put into correspondence a binary relation \(\alpha_f \) on the set \(X \) that satisfies the condition

\[
\{ x \in X \mid \forall \alpha \in \alpha_f \}
\]

The set of all such \(\alpha_f \) \((f : X \rightarrow D)\) is denoted by \(B_X(D) \). It is easy to prove that \(B_X(D) \) is a semigroup with respect to the operation of multiplication of binary relations, which is called a complete semigroup of binary relations defined by an \(X - \) semilattice of unions \(D \).

We denote by \(\emptyset \) an empty binary relation or an empty subset of the set \(X \). The condition \((x, y) \in \alpha \) will be written in the form \(x \alpha y \). Further, let \(x, y \in X , Y \subseteq X , \alpha \in B_X(D), \ D = \bigcup_{y \in D} Y \) and \(T \in D \). We denote by the symbols \(y \alpha , Y \alpha , V(D, \alpha) , X^*, V\left(X^*, \alpha \right) \) and \(D_t \) the following sets:

\[
\begin{align*}
\{ x \in X \mid y \alpha x \}, & \quad Y \alpha = \bigcup_{y \in T} Y \alpha, \quad V(D, \alpha) = \{ Y \alpha \mid Y \in D \}, \\
X^* = \{ Y \mid \emptyset \neq Y \subseteq X \}, & \quad V\left(X^*, \alpha \right) = \{ Y \alpha \mid \emptyset \neq Y \subseteq X \}, \\
D_t = \{ Z \in D \mid T \subseteq Z \}. &
\end{align*}
\]

It is well know the following statements:

Theorem 1.2. Let \(D = \{ D, Z_1, Z_2, \ldots, Z_m \} \) be some finite \(X - \) semilattice of unions and \(C(D) = \{ P_0, P_1, P_2, \ldots, P_m \} \) be the family of sets of pairwise nonintersecting subsets of the set \(X \) (the set \(\emptyset \) can be repeat several time). If \(\varphi \) is a mapping of the semilattice \(D \) on the family of sets \(C(D) \) which satisfies the condition

\[
\varphi = \left(\begin{array}{cccc}
D & Z_1 & Z_2 & \ldots & Z_m \\
\hline
P_0 & P_1 & P_2 & \ldots & P_m
\end{array} \right)
\]

and \(\hat{D}_2 = D \setminus D_2 \), then the following equalities are valid:
In the sequel these equalities will be called formal. It is proved that if the elements of the semilattice D are represented in the form (1.1), then among the parameters P_i $(0 < i \leq m-1)$ there exist such parameters that cannot be empty sets for D. Such sets P_i are called basis sources, whereas sets P_j $(0 \leq j < m-1)$ which can be empty sets too are called completeness sources.

It is proved that under the mapping φ the number of covering elements of the pre-image of a basis source is always equal to one, while under the mapping φ the number of covering elements of the pre-image of a completeness source either does not exist or is always greater than one (see [1], chapter 11). Let $P_0, P_1, P_2, ..., P_{m-1}$ be parameters in the formal equalities, $\beta \in B_x(D)$ and

$$\tilde{\beta} = \bigcup_{i=0}^{m-1} P_i \times \bigcup_{i \in \beta} \bigcup_{t \in X \setminus D} \{t' \times t' \beta\}. \quad \ldots (1.2)$$

The representation of the binary relation β of the form $\tilde{\beta}$ will be called subquasinormal. If $\tilde{\beta}$ be the subquasinormal representation of the binary relation β, then for the binary relation $\tilde{\beta}$ the following statements are true:

a) $\tilde{\beta} \in B_x(D);$
b) $\beta \subseteq \tilde{\beta};$

c) the subquasinormal representation of the binary relation β is quasinormal;

d) if $\tilde{\beta} = \left\{ P_0, P_1, P_2, ..., P_{m-1} \right\}$, then $\tilde{\beta}$ is a mapping of the family of sets $C(D)$ in the set $D \cup \{\emptyset\}.$

e) if $\tilde{\beta} : X \setminus D \rightarrow D$ is a mapping satisfying the condition $\tilde{\beta}(t') = t' \beta$ for all $t' \in X \setminus D$, then

$$\tilde{\beta} = \bigcup_{i=0}^{m-1} P_i \times \bigcup_{i \in \beta} \bigcup_{t \in X \setminus D} \{t' \times \tilde{\beta}(t')\}. \quad \ldots (1.3)$$

Remark, that if P_j $(0 \leq j < m-1)$ is such completeness sources, that $P_0 = \emptyset$, then the equality $P_0 \tilde{\beta} = \emptyset$ always is hold. There also exists such a basic sources P_i $(0 \leq i < m-1)$ for which $\bigcup_{t \in P_i} t \beta = \emptyset$, i.e. $P_0 \tilde{\beta} = \emptyset$.

Example 1.1. Let $X = \{1, 2, 3, 4\}$, $D = \{\emptyset, \{1, 2\}\}$, then $P_0 = \emptyset$, $P_2 = \{1, 2\}$. If $\tilde{\beta} = \{\{1\}, \{1, 2\}, \{2, 1\}, \{2, 2\}, \{4, 1\}, \{4, 2\}\}$, then $\beta \in B_x(D)$ and subquasinormal representation of a binary relation β has a form

Fig. 1.1

$$\tilde{\beta} = \left\{ P_0, P_1 \right\}, \quad \tilde{\beta} = \left\{ P_1, 3 \right\}.$$

$$\bar{\beta} = (\emptyset \times \emptyset) \cup (\{1, 2\} \times \{1, 2\}) \cup \{3\} \times \emptyset \cup \{4\} \times \{1, 2\} =$$

$$= (\emptyset \times \emptyset) \cup (P_1 \times \{1, 2\}) \cup \{3\} \times \emptyset \cup \{4\} \times \{1, 2\},$$

where P_i are basic sources and β is completeness sources.

Theorem 1.2. Let $\alpha, \beta \in B_x(D)$, then $\alpha \circ \beta = \alpha \circ \tilde{\beta}$ (see [4], Proposition 2).

2.1 Let $\Sigma_i(X, 2)$ be a class of all X - semilattices of unions, whose every element is isomorphic to an X - semilattice of unions $D = \{Z_i, \bar{D}\}$ which satisfies the condition $Z_i \subset \bar{D}$ (see, Fig. 2.1).
Let $C(D) = \{P_0, P_1\}$, where $P_0, P_1 \subseteq X$ and $P_0 \cap P_1 = \emptyset$ and $\varphi = \left(\begin{array}{c} \bar{D} \\ \bar{Z}_i \end{array} \right)$ is a mapping of the semi lattice D onto the set $C(D)$. Then for the formal equalities of the semilattice D we have a form:

$$
\bar{D} = P_0 \cup P_1,
\bar{Z}_i = P_0,
$$

(2.1)

Here the element P_1 be basis sources, the element P_0 are sources of completeness of the semilattice D. Therefore $|X| \geq 1$.

Definition 2.1. We say that an element α of the semigroup $B_\alpha(D)$ is external if $\alpha \neq \delta \circ \beta$ for all $\delta, \beta \in B_\alpha(D) \setminus \{\alpha\}$ (see [1], Definition 1.15.1).

It is well known, that if B is all external elements of the semigroup $B_\alpha(D)$ and B' be any generated set for the $B_\alpha(D)$, then $B \subseteq B'$ (see [1], Lemma 1.15.1).

Lemma 2.1. Let $D = \{Z_i, \bar{D}\} \in \Sigma, (X, 2)$, $B = \{\alpha \in B_\alpha(D)|V(X^*, \alpha) = D\}$. If $B \neq \emptyset$, then B is a set external elements of the semigroup $B_\alpha(D)$.

Proof. Let $D = \{Z_i, \bar{D}\} \in \Sigma, (X, 2)$, $\alpha \in B$ and $\alpha = \delta \circ \beta$ for some $\delta, \beta \in B_\alpha(D) \setminus \{\alpha\}$. Then element δ has quasinormal representation of a form $\delta = (Y_{i}^f \times Z_i) \cup (Y_{0}^f \times \bar{D})$, i.e. $Y_{i}^f \cup Y_{0}^f = X$ and $Y_i^f \cap Y_0^f = \emptyset$. (see [1], definition 1.11), By Theorem 1.2 follows that $\alpha = \delta \circ \beta = \delta \circ \bar{\beta}$, where $\bar{\beta}$ is subquasinormal representation of a binary relation β. It is easy to see, that

$$
\alpha = \delta \circ \bar{\beta} = (Y_{i}^f \times Z_i \bar{\beta}) \cup (Y_{0}^f \times \bar{D} \bar{\beta})
$$

From the equality $\alpha = \delta \circ \bar{\beta}$ follows that $D = V(X^*, \alpha) \subseteq V(D, \bar{\beta})$ (see [1], Theorem 4.1.1). So, $D = V(D, \bar{\beta})$.

By proposition $\alpha \in B$, i.e. there exists quasinormal representations of a binary relation α of the form $\alpha = (Y_{i}^f \times Z_i) \cup (Y_{0}^f \times \bar{D})$, where $|Y_{i}^f| \geq 1$ for all $i, 0, 1$ since $\alpha \in B$ (if $Y_j^f = \emptyset$ for some $j (0 \leq j \leq 1)$, then $V(X^*, \alpha) \neq D$), i.e. $|X| \geq 2$.

For the element Z_i we consider the following cases.

a) $Z_i = \emptyset$. In this case we have $P_0 = \cap D = \emptyset$ and

$$
\gamma_1 = \left(\begin{array}{c} \emptyset \\ \emptyset \end{array} \right), \gamma_2 = \left(\begin{array}{c} \emptyset \\ \emptyset \end{array} \right)
$$

are all mappings of the set $\{\emptyset, P_1\}$ in the semi lattice D satisfying condition $\gamma_i(\emptyset) = \emptyset (i = 1, 2)$.

If $X = \bar{D}$, then from the formal equalities (2.1) follows that $\emptyset \cup P_1 = \bar{D}$. In this case $P_0 = \emptyset$, $P_1 = \bar{D}$, $X \setminus \bar{D} = \emptyset$, $\bar{\beta} = (\emptyset \times \emptyset) \cup (P_1 \times \bar{D}) \cup \emptyset = X \times \bar{D}$ (see equality 1.2). It easy to see $V(D, \bar{\beta}) = D$ and

$$
\alpha = \delta \circ \bar{\beta} = (Y_{i}^f \times Z_i \circ (X \times D)) \cup (Y_{0}^f \times \bar{D} \circ (X \times D)) =
(Y_{i}^f \times Z_i \circ (X \times D)) \cup (Y_{0}^f \times \bar{D} \circ (X \times D)) =
(Y_{i}^f \times D) \cup (Y_{0}^f \times D) = X \times \bar{D} \notin B
$$

since $V(X^*, \alpha) = \{\bar{D}\} \neq D$. So, $X \neq \bar{D}$.

In the sequel we suppose, that $|X \setminus \bar{D}| \geq 1$.

For the binary relations $\gamma_i (i = 1, 2)$ we consider the following cases.
Let $\gamma_1 = \left(\emptyset, P_1, D \right)$. By formal equality (2.1) follows that $P_1 = D \neq \emptyset$. If γ_i be a mapping of the set $X \setminus D$ on the set $D \setminus \emptyset = \{D\}$ (by preposition $|X \setminus D| \geq 1$), then

$$\bar{\beta} = (P_1 \times \emptyset) \cup \bigcup_{t \in X \setminus D} \left(\{t\} \times \gamma_i(t) \right). \quad \ldots (2.3)$$

$V(D, \bar{\beta}) = D$ (see equality 1.2) and from the formal equality (2.1) and equalities (2.2), (2.3) follows that

$$Z_i \bar{\beta} = \emptyset \bar{\beta} = \emptyset,$$

$$D \bar{\beta} = \emptyset \bar{\beta} \cup P_1 \bar{\beta} = \emptyset \cup \emptyset = \emptyset,$$

$$\alpha = \delta \circ \bar{\beta} = (Y_i^\delta \times Z_i \bar{\beta}) \cup (Y_i^\delta \times D \bar{\beta}) =$$

$$\quad = (Y_i^\delta \times \emptyset) \cup (Y_i^\delta \times \emptyset) = X \times \emptyset = \emptyset \not\in B$$

since $V(X^*, \alpha) = \{\emptyset\} \neq D$.

If $\gamma_2 = \left(\emptyset, P_2, \emptyset \right)$ and γ_2 be a mapping of the set $X \setminus D$ on the semilattice $D \setminus \{D\}$. So, if

$$\bar{\beta} = (P_1 \times \emptyset) \cup \bigcup_{t \in X \setminus D} \left(\{t\} \times \gamma_i(t) \right), \quad \ldots (2.4)$$

then $V(D, \bar{\beta}) = D$. From the formal equality (2.1) and equalities (2.2), (2.4) we have:

$$Z_i \bar{\beta} = \emptyset \bar{\beta} = \emptyset,$$

$$D \bar{\beta} = \emptyset \bar{\beta} \cup P_1 \bar{\beta} = \emptyset \cup \emptyset = \emptyset,$$

$$\alpha = \delta \circ \bar{\beta} = (Y_i^\delta \times Z_i \bar{\beta}) \cup (Y_i^\delta \times D \bar{\beta}) =$$

$$\quad = (Y_i^\delta \times \emptyset) \cup (Y_i^\delta \times \emptyset) = X \times \emptyset = \emptyset \not\in B.

But, the equality $\alpha = \delta$ contradict the condition, that $\delta \in B_\times(D) \setminus \{\alpha\}$. That is in this case $\alpha \not\in B$.

So, from the cases a) follows that B is a set external elements of semigroup $B_\times(D)$ since the mappings γ_i ($i=1,2$) are all mappings of the set $\{\emptyset, P_1\}$ in the semilattice D satisfying condition $\gamma_i(\emptyset) = \emptyset$.

b) $Z_i \neq \emptyset$. Then $P_0 = \cap D \neq \emptyset$ and

$$\sigma_1 = \left(P_0, P_1, Z_i \right), \quad \sigma_2 = \left(P_0, P_1, D \right), \quad \sigma_3 = \left(P_0, P_1, Z_i \right) \quad \text{and} \quad \sigma_4 = \left(P_0, P_1, D \right)$$

are all mappings of the set $\{P_0, P_1\}$ in the semilattice D. .

If $X = \bar{D}$ and $\sigma_i(P_1) = \sigma_i(P_1)$ ($i = 1, 4$), then from the formal equalities (2.1) follows that $\sigma_i(P_1) = \bar{D}$ and in this case $\bar{\beta} = X \times \sigma_i(P_1)$ (see equality 1.2). So, $\bar{\beta} = X \times Z_i$ or $\bar{\beta} = X \times D$. Both case $V(D, \bar{\beta}) = D$ and

$$\alpha = \delta \circ \bar{\beta} = (Y_i^\delta \times Z_i) \cup \left(Y_i^\delta \times \bar{D} \right) \circ (X \times Z_i) =$$

$$\quad = (Y_i^\delta \times Z_i) \cup \left(Y_i^\delta \times \bar{D} \right) \circ (X \times Z_i) =$$

$$\quad = (Y_i^\delta \times Z_i) \cup \left(Y_i^\delta \times Z_i \right) = X \times \emptyset \not\in B.$$
Let $\sigma_1 = \begin{pmatrix} P_0 & P_1 \\ Z_0 & Z_1 \end{pmatrix}$. In this case we have $P_0 \neq \emptyset$ and $P_1 \neq \emptyset$. If σ_1 be a mapping of the set $X \setminus \bar{D}$ on the set $D \setminus \{Z_1\} = \{D\}$ (by preposition $|X \setminus \bar{D}| \geq 1$), then

$$\bar{\beta} = ((P_0 \cup R) \times Z_1) \cup \bigcup_{i \neq X \setminus \bar{D}} \{t'_i \times \sigma_1(t'_i)\}, \quad \ldots \quad (2.5)$$

$V(D, \bar{\beta}) = D$ and from the formal equality (2.1) and equalities (2.2), (2.5) follows that

$$Z_i \bar{\beta} = P_i \bar{\beta} = Z_i,$$

$$D \bar{\beta} = P_i \bar{\beta} \cup P_i \bar{\beta} = Z_i \cup \bar{\bar{D}} = \bar{D},$$

$$\alpha = \delta \circ \bar{\beta} = (Y_i^0 \times Z_i \bar{\beta}) \cup (Y_i^0 \times \bar{\bar{D}} \bar{\beta}) =$$

$$= (Y_i^0 \times Z_i) \cup (Y_i^0 \times \bar{D}) = X \times Z \notin B$$

since $V(X^*, \alpha) = \{Z_i\} \neq D$.

If $\sigma_2 = \begin{pmatrix} P_0 & P_1 \\ Z_0 & \bar{D} \end{pmatrix}$ and σ_3 is mapping of the set $X \setminus \bar{D}$ in the semilattice D. So, if

$$\bar{\beta} = (P_i \times Z_i) \cup (\bar{P}_i \times \bar{D}) \cup \bigcup_{i \neq X \setminus \bar{D}} \{t'_i \times \sigma_3(t'_i)\}, \quad \ldots \quad (2.6)$$

then $V(D, \bar{\beta}) = D$. From the formal equality (2.1) and equalities (2.2), (2.6) we have:

$$Z_i \bar{\beta} = P_i \bar{\beta} = Z_i,$$

$$D \bar{\beta} = P_i \bar{\beta} \cup \bar{P}_i \bar{\beta} = Z_i \cup \bar{D} = \bar{D},$$

$$\alpha = \delta \circ \bar{\beta} = (Y_i^0 \times Z_i \bar{\beta}) \cup (Y_i^0 \times \bar{D} \bar{\beta}) =$$

$$= (Y_i^0 \times Z_i) \cup (Y_i^0 \times \bar{D}) = X \times \bar{D} \notin B$$

But, the equality $\alpha = \delta$ contradict the condition, that $\delta \in B \setminus \{D\} \setminus \{\alpha\}$. That is in this case $\alpha \notin B$.

If $\sigma_3 = \begin{pmatrix} P_0 & P_1 \\ \bar{D} & Z_1 \end{pmatrix}$ and σ_4 is a mapping of the set $X \setminus \bar{D}$ in the semilattice D. So, if

$$\bar{\beta} = (P_i \times \bar{D}) \cup (P_i \times Z_i) \cup \bigcup_{i \neq X \setminus \bar{D}} \{t'_i \times \sigma_4(t'_i)\}, \quad \ldots \quad (2.7)$$

then $V(D, \bar{\beta}) = D$. From the formal equality (2.1) and equalities (2.2), (2.7) we have:

$$Z_i \bar{\beta} = P_i \bar{\beta} = D,$$

$$D \bar{\beta} = P_i \bar{\beta} \cup \bar{P}_i \bar{\beta} = \bar{D} \cup \bar{Z}_i = D,$$

$$\alpha = \delta \circ \bar{\beta} = (Y_i^0 \times Z_i \bar{\beta}) \cup (Y_i^0 \times D \bar{\beta}) =$$

$$= (Y_i^0 \times \bar{D}) \cup (Y_i^0 \times D) = X \times \bar{D} \notin B$$

since $V(X^*, \alpha) = \{\bar{D}\} \neq D$.

Let $\sigma_4 = \begin{pmatrix} P_0 & P_1 \\ \bar{D} & \bar{D} \end{pmatrix}$. If σ_4 be a mapping of the set $X \setminus \bar{D}$ on the set $D \setminus \{\bar{D}\} = \{Z_i\}$, then

$$\bar{\beta} = ((P_i \cup R) \times \bar{D}) \cup \bigcup_{i \neq X \setminus \bar{D}} \{t'_i \times \sigma_4(t'_i)\}, \quad \ldots \quad (2.8)$$

$V(D, \bar{\beta}) = D$ and from the formal equality (2.1) and equalities (2.2), (2.8) follows that

$$Z_i \bar{\beta} = P_i \bar{\beta} = \bar{D},$$

$$D \bar{\beta} = P_i \bar{\beta} \cup \bar{P}_i \bar{\beta} = \bar{D} \cup \bar{D} = \bar{D},$$

$$\alpha = \delta \circ \bar{\beta} = (Y_i^0 \times Z_i \bar{\beta}) \cup (Y_i^0 \times \bar{D} \bar{\beta}) =$$

$$= (Y_i^0 \times \bar{D}) \cup (Y_i^0 \times \bar{D}) = X \times \bar{D} \notin B$$

since $V(X^*, \alpha) = \{\bar{D}\} \neq D$.

21
So, from the cases b) follows that \(B \) is a set external elements of semigroup \(B_{\alpha}(D) \) since the mappings
\(\sigma_{i} - \sigma_{i} \) are all mappings of the set \(\{P_{i}, P_{i} \} \) in the semilattice \(D \).

Lemma 2.1 is proved.

Corollary 2.1. Let \(D = \{\emptyset, D\} \in \Sigma_{i}(X, 2) \) and \(B = \{ \alpha \in B_{\alpha}(D) | V(X, \alpha) = D \} \). Then the following statements are true:

1. If \(|X \setminus D| \geq 1 \) and \(Z_i = \emptyset \), then \(\alpha = X \times D \) do not generating by elements of the set \(B \);
2. If \(X = \tilde{D} \) and \(Z_i \neq \emptyset \), then \(\alpha = X \times Z_i \) do not generating by elements of the set \(B \);
3. If \(X = \tilde{D} \) and \(Z_i = \emptyset \), then \(\alpha = \emptyset \) and \(\alpha = X \times \tilde{D} \) do not generating by elements of the set \(B \).

Proof. Let \(|X \setminus D| \geq 1 \), \(Z_i = \emptyset \) and \(\delta, \beta \in B \). Then quasinormal representation of a binary relation \(\delta \) has a form
\[
\delta = (Y^{\delta}_{1} \times \emptyset) \cup (Y^{\delta}_{0} \times D),
\]
where \(Y^{\delta}_{1}, Y^{\delta}_{0} \notin \{ \emptyset \} \) and
\[
\delta \circ \beta = (Y^{\delta}_{1} \times \emptyset \beta) \cup (Y^{\delta}_{0} \times \tilde{D} \beta) = (Y^{\delta}_{1} \times \emptyset) \cup (Y^{\delta}_{0} \times \tilde{D} \beta) \neq X \times \tilde{D},
\]
since \(Y^{\delta}_{1} \neq \emptyset \).

Therefore, if \(|X \setminus D| \geq 1 \) and \(Z_i = \emptyset \), then \(\alpha = X \times D \) do not generating by elements of the set \(B \).

The statement 1) of the Corollary 2.1 is proved.

Let \(X = D \) and \(Z_i \neq \emptyset \). If \(\delta \) and \(\beta \) are such elements of the set \(B \), that \(\delta \circ \beta = X \times Z_i \), then quasinormal representation of a binary relation \(\delta \) has a form
\[
\delta = (Y^{\delta}_{1} \times Z_i) \cup (Y^{\delta}_{0} \times \tilde{D}),
\]
where \(Y^{\delta}_{1}, Y^{\delta}_{0} \notin \{ \emptyset \} \) and
\[
\delta \circ \beta = (Y^{\delta}_{1} \times Z_i \beta) \cup (Y^{\delta}_{0} \times \tilde{D} \beta) = (Y^{\delta}_{1} \times Z_i) \cup (Y^{\delta}_{0} \times X \beta) = X \times Z_i,
\]
i.e. \(Z_i \beta = X \beta = Z_i \). Of the equality \(X \beta = Z_i \) follows that \(t \beta = Z_i \) for all \(t \in X \) since \(Z_i \) be smallest element of the semilattice \(D \). So, the equality \(\beta = X \times Z_i \) is true. Last equality contradict the condition \(\beta \in B \) since \(V(X, \beta) = \{Z_i\} \neq D \). Therefore, binary relation \(\alpha = X \times Z_i \) do not generating by elements of the set \(B \).

The statement 2) of the Corollary 2.1 is proved.

Let \(X = D \), \(Z_i = \emptyset \). If \(\alpha = \delta \circ \beta \) for some \(\delta, \beta \in B \), then quasinormal representations of binary relations \(\delta \) and \(\beta \) has a form
\[
\delta = (Y^{\delta}_{1} \times \emptyset) \cup (Y^{\delta}_{0} \times D) = (Y^{\delta}_{1} \times \emptyset) \cup (Y^{\delta}_{0} \times X),
\]
\[
\beta = (Y^{\beta}_{1} \times \emptyset) \cup (Y^{\beta}_{0} \times D) = (Y^{\beta}_{1} \times \emptyset) \cup (Y^{\beta}_{0} \times X),
\]
where \(Y^{\delta}_{1}, Y^{\delta}_{0}, Y^{\beta}_{1}, Y^{\beta}_{0} \notin \{ \emptyset \} \) since \(V(X, \delta) = V(X, \beta) = D \) (\(\delta, \beta \in B \)). So, we have:
\[
\alpha = \delta \circ \beta = \left((Y^{\delta}_{1} \times \emptyset) \cup (Y^{\delta}_{0} \times X) \right) \circ \left((Y^{\beta}_{1} \times \emptyset) \cup (Y^{\beta}_{0} \times X) \right) = \left((Y^{\delta}_{1} \times \emptyset) \circ (Y^{\beta}_{1} \times \emptyset) \cup (Y^{\delta}_{0} \times \emptyset) \circ (Y^{\beta}_{0} \times \emptyset) \right) \cup \left((Y^{\delta}_{1} \times \emptyset) \circ (Y^{\beta}_{1} \times X) \cup (Y^{\delta}_{0} \times \emptyset) \circ (Y^{\beta}_{0} \times X) \right) = \emptyset \cup \emptyset \cup \emptyset \cup \emptyset \times \emptyset = \emptyset
\]
since \(X \times Y^{\beta}_{1} = Y^{\beta}_{1} \neq \emptyset \) and \(X \times Y^{\beta}_{0} = Y^{\beta}_{0} \neq \emptyset \). Bat from the equalities \(\alpha = \emptyset \), \(\alpha = \delta \) or \(\alpha = X \times \tilde{D} \), \(\alpha = \delta \) respectively follows that \(\alpha \notin B \) and \(\alpha \notin B \) since \(\delta \in B \) by preposition, i.e. \(\alpha = \emptyset \) and \(\alpha = X \times \tilde{D} \) do not generating by elements of the set \(B \).

The statement 3) of the Corollary 2.1 is proved.

The Corollary 2.1 is proved.
Theorem 2.1. Let $D = \{Z_i, \bar{D}\} \in \Sigma(X, 2)$. If $B = \{\alpha \in B_x(D) \mid V \{X^*, \alpha\} = D\}$, then the following statements are true:

a) if $|X \setminus \bar{D}| \geq 1$ and $Z_i \neq \emptyset$, then B is irreducible generating set for the semigroup $B_x(D)$;

b) if $|X \setminus \bar{D}| \geq 1$ and $Z_i = \emptyset$, then $B \cup \{X \times \bar{D}\}$ is irreducible generating set for the semigroup $B_x(D)$.

c) if $X = \bar{D}$ and $Z_i \neq \emptyset$, then $B \cup \{X \times Z_i\}$ is irreducible generating set for the semigroup $B_x(D)$;

d) if $X = \bar{D}$ and $Z_i = \emptyset$, then $B \cup \{\emptyset, X \times \bar{D}\}$ is irreducible generating set for the semigroup $B_x(D)$.

Proof. Let $|X \setminus \bar{D}| \geq 1$. Then binary relation α has a quasinormal representation of the form $\alpha = (Y^*_i \times Z_i) \cup (\bar{Y}_i^* \times \bar{D})$, where $Y^*_i = \emptyset$ or $\bar{Y}_i^* = \emptyset$ ($V \{X^*, \alpha\} \neq D$ since $\alpha \in B$).

Let $Y_i^* = \emptyset$. Then $\alpha = X \times \bar{D}$ and for any $\delta = (Y^*_i \times Z_i) \cup (\bar{Y}_i^* \times \bar{D}) \in B$ and for $\beta = (Z_i \times \bar{D}) \cup (X \times Z_i \times Z_i)$ we have $\beta \in B$ since $Z_i \neq \emptyset$ by preposition and $X \setminus \bar{D} \supset X \times Z_i \neq \emptyset$. So, the following equalities hold: $\delta \circ \beta = (Y^*_i \times Z_i) \cup (\bar{Y}_i^* \times \bar{D}) = (Y^*_i \times Z_i) \cup (X \times Z_i \times Z_i) = (Y^*_i \times Z_i) \cup (X \times Z_i \times Z_i)$

since $Z_i \subset D$ by preposition.

Let $Y_i^* = \emptyset$. Then $\alpha = X \times \bar{D}$ and for any $\delta = (Y^*_i \times Z_i) \cup (\bar{Y}_i^* \times \bar{D}) \in B$ and for $\beta = (\bar{D} \times Z_i) \cup (X \setminus \bar{D} \times \bar{D})$ we have $\beta \in B$ since $X \setminus D \neq \emptyset$ ($|X \setminus \bar{D}| \geq 1$). So, the following equalities are true: $\delta \circ \beta = (Y^*_i \times Z_i) \cup (\bar{Y}_i^* \times \bar{D}) = (Y^*_i \times Z_i) \cup (X \times \bar{D} \times \bar{D})$.

$\cup (Y^*_i \times \bar{D}) \circ (X \setminus \bar{D} \times \bar{D}) = (Y^*_i \times Z_i) \cup (X \times \bar{D} \times \bar{D}) = (Y^*_i \times Z_i) \cup (X \times \bar{D} \times \bar{D}) = X \times Z_i = \alpha$

since $\bar{D} \supset Z_i \neq \emptyset$ by preposition.

The statement a) of the Theorem 2.1 is proved.

Let $|X \setminus \bar{D}| \geq 1$ and $Z_i = \emptyset$. Then for any $\delta = (Y^*_i \times \bar{D}) \cup (\bar{Y}_i^* \times \bar{D}) \in B$ and for $\beta = (\bar{D} \times \bar{D}) \cup (X \setminus \bar{D} \times \bar{D})$ we have $\beta \in B$ since $X \setminus D \neq \emptyset$ ($|X \setminus \bar{D}| \geq 1$). So, the following equalities are true: $\delta \circ \beta = (Y^*_i \times \bar{D}) \cup (\bar{Y}_i^* \times \bar{D}) = (Y^*_i \times \bar{D}) \cup (X \setminus \bar{D} \times \bar{D})$

$\cup (Y^*_i \times \bar{D}) \circ (X \setminus \bar{D} \times \bar{D}) = (Y^*_i \times \bar{D}) \cup (X \setminus \bar{D} \times \bar{D}) = (Y^*_i \times \bar{D}) \cup (X \setminus \bar{D} \times \bar{D}) = \emptyset \cup (Y^*_i \times \bar{D}) \cup (X \setminus \bar{D} \times \bar{D}) = \emptyset = \alpha$.

Now, the statement b) of the Theorem 2.1 immediately follows from the statement 1) of the Corollary 2.1.

Let $X = \bar{D}$ and $Z_i \neq \emptyset$. If $\delta = (Y^*_i \times Z_i) \cup (\bar{Y}_i^* \times \bar{D})$ be any element of the set B and $\beta = (Z_i \times \bar{D}) \cup (X \times Z_i \times Z_i)$. It is easy to see, that $\beta \in B$ and
\[\delta \circ \beta = ((Z_i \times Z_i) \cup ((X \setminus Z_i) \times D)) \cup ((Z_i \times D) \cup ((X \setminus Z_i) \times Z_i)) = \]
\[= (Z_i \times Z_i) \cup ((X \setminus Z_i) \times D) \cup ((X \setminus Z_i) \times Z_i) \cup ((X \setminus Z_i) \times Z_i) \]
\[= (Z_i \times Z_i) \cup ((X \setminus Z_i) \times D) \cup ((X \setminus Z_i) \times Z_i) \cup ((X \setminus Z_i) \times Z_i) \]
\[= (Z_i \times D) \cup ((X \setminus Z_i) \times Z_i) \cup ((X \setminus Z_i) \times Z_i) = \]
\[= Z_i \times Z_i \cup (X \setminus Z_i) \times D) = X \times D \]

since \(Z_i \subset \tilde{D} \) by preposition.

Now, the statement \(c \) of the Theorem 2.1 immediately follows from the statement \(2 \) of the Corollary 2.1.

The statement \(d \) of Theorem 2.1 immediately follows from the statement \(3 \) of the Corollary 2.1.

The Theorem 2.1 is proved.

Theorem 2.2. Let \(X \) be finite a set, \(D = \{Z_i, \tilde{D}\} \in \Sigma_i (X, 2). \) If \(|X| = n, \) then for the number of the irreducible generated set \(B' \) of the semigroup \(B_x (D) \) following statements are true:

a) if \(|X \setminus \tilde{D}| \geq 1 \) and \(Z_i \neq \emptyset, \) then \(|B'| = 2^n - 2; \)

b) if \(|X \setminus \tilde{D}| \geq 1 \) and \(Z_i = \emptyset \) or \(X = \tilde{D} \) and \(Z_i \neq \emptyset, \) then \(|B'| = 2^n - 1; \)

d) if \(X = \tilde{D} \) and \(Z_i = \emptyset, \) then \(|B'| = 2^n. \)

Proof. It is well known, that if \(B \) is all external elements of the semigroup \(B_x (D) \) and \(B' \) be any generated set for the \(B_x (D), \) then \(B \subseteq B'. \) By Lemma 2.1 The set \(B = \{\alpha \in B_x (D) \mid V (X', \alpha) = D\} \) is a set external elements of the semigroup \(B_x (D). \) It is easy to see, that \(B = B_x(D) \setminus \{X \times Z_i, X 	imes \tilde{D}\}. \) Of this follows that \(|B| = 2^n - 2 \) (see 1.1).

By statement \(a \) of the Theorem 2.1 follows that \(B = B', \) i.e. \(|B'| = 2^n - 2. \)

By statement \(b \) and \(c \) of the Theorem 2.1 follows that \(B' = B \cup \{X \times \tilde{D}\} \) or \(B' = B \cup \{X \times Z_i\}, \) i.e. \(|B'| = 2^n - 2 + 1 = 2^n - 1. \)

By statement \(d \) of the Theorem 2.1 follows that \(B' = B \cup \{X \times Z_i, X \times \tilde{D}\}, \) i.e. \(|B'| = (2^n - 2) + 2 = 2^n. \)

Theorem 2.2 is proved.

Example 2.1. Let \(X = \{1,2,3\} \) and \(D = \{\{1\}, \{1,2\}\}, \) i.e. \(|X \setminus \tilde{D}| = 1 \) and \(Z_i = \{1\} \neq \emptyset \) (see statement \(a \)).

Then \(B_x(D) = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6\} \), where

\[\alpha_1 = \{(1,1),(2,1),(3,1)\}, \quad \alpha_2 = \{(1,1),(2,1),(3,1),(3,2)\}, \]
\[\alpha_3 = \{(1,1),(2,1),(2,2),(3,1)\}, \quad \alpha_4 = \{(1,1),(2,1),(2,2),(3,1),(3,2)\}, \]
\[\alpha_5 = \{(1,1),(1,2),(2,1),(3,1)\}, \quad \alpha_6 = \{(1,1),(1,2),(2,1),(3,1),(3,2)\}, \]
\[\alpha_7 = \{(1,1),(1,2),(2,1),(2,2),(3,1)\}, \quad \alpha_8 = \{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)\}. \]

In this case we have \(B = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7\} \) and

\[
\begin{array}{cccccccc}
\circ & \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \alpha_5 & \alpha_6 & \alpha_7 \\
\alpha_1 & \alpha_2 & \alpha_1 & \alpha_3 & \alpha_4 & \alpha_5 & \alpha_6 & \alpha_7 \\
\alpha_2 & \alpha_1 & \alpha_2 & \alpha_1 & \alpha_4 & \alpha_5 & \alpha_6 & \alpha_7 \\
\alpha_3 & \alpha_4 & \alpha_3 & \alpha_1 & \alpha_2 & \alpha_5 & \alpha_6 & \alpha_7 \\
\alpha_4 & \alpha_5 & \alpha_4 & \alpha_3 & \alpha_1 & \alpha_2 & \alpha_6 & \alpha_7 \\
\alpha_5 & \alpha_6 & \alpha_5 & \alpha_4 & \alpha_3 & \alpha_2 & \alpha_7 & \alpha_6 \\
\alpha_6 & \alpha_7 & \alpha_6 & \alpha_5 & \alpha_4 & \alpha_3 & \alpha_7 & \alpha_6 \\
\alpha_7 & \alpha_8 & \alpha_7 & \alpha_6 & \alpha_5 & \alpha_4 & \alpha_8 & \alpha_6 \\
\end{array}
\]
So, we have that $B = \{ \alpha_2, \alpha_4, \alpha_5, \alpha_6, \alpha_7 \}$ is irreducible generated set for the semigroup $B_x(D)$.

Example 2.2. Let $X = \{1,2,3\}$ and $D = \{\emptyset, \{1,2\}\}$, i.e. $|X \setminus \bar{D}| = 1$ and $Z_1 = \emptyset$ (see statement $b)$). Then $B_x(D) = \{\alpha_1, \alpha_2, \ldots, \alpha_8\}$, where

<table>
<thead>
<tr>
<th>α_1</th>
<th>α_2</th>
<th>α_3</th>
<th>α_4</th>
<th>α_5</th>
<th>α_6</th>
<th>α_7</th>
<th>α_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1</td>
<td>α_2</td>
<td>α_3</td>
<td>α_4</td>
<td>α_5</td>
<td>α_6</td>
<td>α_7</td>
<td>α_8</td>
</tr>
<tr>
<td>α_2</td>
<td>α_1</td>
<td>α_2</td>
<td>α_3</td>
<td>α_4</td>
<td>α_5</td>
<td>α_6</td>
<td>α_7</td>
</tr>
<tr>
<td>α_3</td>
<td>α_1</td>
<td>α_2</td>
<td>α_3</td>
<td>α_4</td>
<td>α_5</td>
<td>α_6</td>
<td>α_7</td>
</tr>
<tr>
<td>α_4</td>
<td>α_1</td>
<td>α_2</td>
<td>α_3</td>
<td>α_4</td>
<td>α_5</td>
<td>α_6</td>
<td>α_7</td>
</tr>
<tr>
<td>α_5</td>
<td>α_1</td>
<td>α_2</td>
<td>α_3</td>
<td>α_4</td>
<td>α_5</td>
<td>α_6</td>
<td>α_7</td>
</tr>
<tr>
<td>α_6</td>
<td>α_1</td>
<td>α_2</td>
<td>α_3</td>
<td>α_4</td>
<td>α_5</td>
<td>α_6</td>
<td>α_7</td>
</tr>
<tr>
<td>α_7</td>
<td>α_1</td>
<td>α_2</td>
<td>α_3</td>
<td>α_4</td>
<td>α_5</td>
<td>α_6</td>
<td>α_7</td>
</tr>
</tbody>
</table>

In this case we have $B = \{\alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7\} \cup \{\alpha_8\}$ and

So, we have that $B = \{\alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7\} \cup \{\alpha_8\}$ is irreducible generated set for the semigroup $B_x(D)$.

Example 2.3. Let $X = \{1,2\}$ and $D = \{\{1\}, \{1,2\}\}$, i.e. $X = \bar{D} = \{1\}$ and $Z_1 = \emptyset$ (see statement $b)$). Then $B_x(D) = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$, where

$\alpha_1 = \{(1,1),(2,1)\}$,
$\alpha_2 = \{(1,1),(2,1),(2,2)\}$,
$\alpha_3 = \{(1,1),(1,2),(2,1)\}$,
$\alpha_4 = \{(1,1),(1,2),(2,1),(2,2)\}$.

In this case we have $B = \{\alpha_1, \alpha_2\} \cup \{\alpha_3\}$ and

So, we have that $B = \{\alpha_2, \alpha_3\} \cup \{\alpha_1\}$ is irreducible generated set for the semigroup $B_x(D)$.

Example 2.4. Let $X = \{1,2\}$ and $D = \{\emptyset, \{1,2\}\}$, i.e. $X = \bar{D} = \{1,2\}$ and $Z_1 = \emptyset$ (see statement $d)$). Then $B_x(D) = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$, where

$\alpha_1 = \emptyset$, $\alpha_2 = \{(2,1),(2,2)\}$,
$\alpha_3 = \{(1,1),(1,2)\}$,
$\alpha_4 = \{(1,1),(1,2),(2,1),(2,2)\}$.

In this case we have $B = \{\alpha_2, \alpha_3\} \cup \{\alpha_1, \alpha_4\}$ and

So, we have that $B = \{\alpha_2, \alpha_3\} \cup \{\alpha_1, \alpha_4\}$ is irreducible generated set for the semigroup $B_x(D)$.
So, we have that $B = \{ \alpha_2, \alpha_3 \} \cup \{ \alpha_4, \alpha_5 \}$ is irreducible generated set for the semi group $B_X (D)$.

REFERENCES

