Lean Based Problem Solving using 3D Laser Scanned Visualizations of Production Systems

Erik Lindskog, Jonatan Berglund, Johan Vallhagen, and Björn Johansson

Abstract—3D laser scanning technology holds the capability to provide accurate and realistic visualizations of production systems. These visualizations can be used as decision-support in project teams when planning the redesign of production systems. To make such decision-support effective, a structured approach for how to use the realistic visualizations in team environments is required. The purpose of this paper is to propose a structured approach of how realistic visualizations can be used to solve problems that are identified while planning the redesign of a production system. The proposed approach derives from a theoretical framework on problem solving and three industrial studies applying realistic visualizations. The result is a description of how realistic visualizations can be used in the five steps of the problem solving approach LAMDA used in Lean product development. Such approach has the potential to support project teams in making the required decision by systematic solve problems pro-actively while planning the redesign of production systems.

Index Terms—3D laser scanning, Point cloud, Problem solving, Production systems.

1. INTRODUCTION

The requisite to redesign production systems could derive from different causes, such as change in market demands, new product introduction, or new production technologies. To planning the redesign involves complex processes with numerous factors and scenarios to consider, e.g., material handling, production flows, and factory logistics [1], [2]. Such processes involve project teams with key experts and competences from different areas of the organization [3]. These experts are usually responsible for e.g., facilities, maintenance, machine acquisition, material handling, or process engineering. Their focus is on deciding where and how to install new equipment or on how to implement other changes to the production system. Early decisions in planning process are usually made based on spatial limitations and other existing pre-conditions in the facility, specific machine or process capacity needs, and logistic conditions or goals.

Virtual manufacturing tools can be used to support project teams to analyze, define, document, discuss, and communicate planned redesigns of production systems [4]. An example is layout planning, where virtual representations are used as decision-support by analyze and visualize different layout alternatives [5]. If these representations are difficult to understand it may lead to misunderstandings in the project teams, which can result in problems that only are noticeable when implementing the production systems [6], [7]. However, by creating virtual representations that visualize the production system in a realistic way and are easy to understand can reduce the number of misunderstandings by enable a common understanding in project teams [6], [8]. The term realistic is defined as representing things in a way that is accurate and true to life [9]. Using realistic visualizations will also make it possible to include e.g., shop floor personnel in the planning process [8]. A better understanding of the redesigned production system will make it possible to identify and solve possible problems using the realistic visualization. However, to make the identification and solving process efficient a structured approach is required.

In this paper, a problem solving approach will be described that can be used in combination with realistic visualizations of production systems in project teams. The aim is to reduce cost and lead-time as well as improve performance in the planning process by identifying risks and solving problems pro-actively. This aim will be reached by addressing the following research questions:

1. How can realistic visualizations support project teams when planning redesigns of production systems?
2. How can a feasible problem solving approach be adopted to support decision-making using realistic visualizations in project teams?

The research questions are addressed based on a theoretical framework and three industrial studies. These studies have been carried out in projects that were planning the redesign of production systems producing large mechanical components for aerospace industry. The production systems are characterized by discrete process steps that are
organized in a mix of functional and product flow workshops. This paper discusses how realistic visualizations of production systems can support the decision-making by detecting and solving problems pro-actively in project teams. The realistic visualizations are created using 3D laser scanning, which holds the capability of creating realistic visualization of production system in a few hours. The laser scan data in combination with 3D computed aided design (CAD) models and simulation technology are used to generate and analyze redesigned scenarios of the production systems.

II. THE METHOD USED TO ADDRESS THE PROBLEM SOLVING APPROACH

The problem solving approach addressed in this paper is a result of lessons learned from three industrial studies along with a theoretical framework, as shown in Fig. 1. Industrial study A and B were carried out in 2011 and 2012 with the aim to use 3D laser scan data to support project teams when planning the installation of new machines in the production systems. These studies has previously been published in [8] by the authors of this paper. The experiences and conclusions from the first two industrial studies were used when designing Industrial study C. The aim of Industrial study C was to further evaluate whether realistic visualizations created from 3D laser scan data could support different expert areas and phases of the redesigning process of production systems. This with the objective to go from a static visualization considering only the spatial data of the facility to the use of 3D scan data in a simulation model, as presented conceptually in [10]. Industrial study C was carried out in 2013 as a collaboration between the authors and the master thesis by Jansson and Roos [11]. In this paper, a summary of the study is presented focusing on how to create a realistic visualization followed by an evaluation of the perceived benefits and drawbacks with such visualizations. The lessons learned from this evaluation in combination with those from Industrial study A and B are the main contributions to proposing the use of a problem solving approach. As the theoretical framework, a literature study was carried out to find possible approaches to match the requirements.

III. STATE OF THE ART

In the last decades, there have been several attempts to use virtual representations when redesigning production systems. Visualizing the virtual representations in a realistic way has shown to be important in such attempts [7]. The term Virtual factory is used to describe an approach of working virtually with planning factories, including digital visualizations of current or planned production systems [12]. Such visualizations are primarily used for decision-support, but examples can be found where they aspire to become the blueprint of the real factory [13]. The decisions are made with support from the analysis of conditions that are currently not present, e.g. for different market demand behaviors or with added or removed equipment. Hence, the virtual representations can be used as decision-support when predicting the future performance for a well-defined set of changes [12].

A. 3D laser scanning to capture and visualize factory spatial data

A number of production-engineering problems can be solved by access to accurate spatial data of production systems. For example, if adding equipment to production systems the production engineers needs to know the physical properties of the current system. These physical properties can be accessed either in real system environment or in virtual representations such as drawings of the system. Many times, such drawings are missing, out of date, or of too poor detail and accuracy to be used. A solution is 3D imaging, which is a field within measurement science that deals with the capture of spatial data. There are many different technologies for that
Lean production is a management philosophy originating from the Toyota Production System (TPS) [23]. Within the Lean philosophy an important aim is to ‘make it simple and keep it visible’, which is achieved through available principles and tools [24]. One such main principle in Lean production is Continuous improvements, which is supported by the four-step approach of the PDCA (Plan-Do-Check-Act) cycle [19]. The purpose with the approach is to learn-by-doing through iterating the cycle over time to continuously improve and solve problems within the
production system. In Lean product development, PDCA is extended into the LAMDA (Look-Ask-Model-Discuss-Act) approach [25], [26]. This approach focuses on finding the root cause, analyzing it and then solving it to remedy the problem. This is close to how Toyota works with problem solving and can be described with the LAMDA cycle; see Fig. 2 [25]. The LAMDA cycle should be repeated until all problems are solved, which can be seen as a perpetual movement towards an improved system design [26]. The five steps of the cycle are described in more details below, according to Ward [26].

Look – go and see for yourself,
Ask – get to the root cause,
Model – using engineering analysis, simulation, or prototypes,
Discuss – with peer reviewers, mentors, and developers of interfacing subsystems, and
Act – test your understanding experimentally.

Fig. 2: The LAMDA cycle [26]

IV. CREATING AND EVALUATING THE REALISTIC VISUALIZATION

Industrial study C was carried out in the same workshop area as Industrial study A, where a robotic cell for automated x-ray inspection of products had been installed since the previous study. To reach the production volume goal, an identical cell was planned to be installed later the same year. The industrial aim was to evaluate where to locate the cell based on conditions such as available space, materials handling, and operator work environment. A simulation based realistic visualization of the workshop area was created as a tool to solve the problem. The process of creating and evaluating the realistic visualization is presented in this section. As presented in Fig. 3, the process is separated into two main phases and six sub-phases.

Creating the realistic visualization
Evaluating the use of realistic visualizations

Gather spatial factory data → Point cloud model of current state → Simulation of redesigned state → Create use scenarios → Group interviews → Analyze

Fig. 3: Summary of the method used in Industrial study C

A. Creating the realistic visualization

The realistic visualization was created from using a 3D laser scanning of the existing production system. The resulting point cloud from the scanning was combined with the point cloud from Industrial study A and 3D CAD models of the robotic cell. In this section, the process of how the spatial factory data was captured with the 3D laser scanner is presented along with how that data was used to create the visualization.

1) Capturing spatial factory data

Spatial data of the factory environment was captured using a FARO Focus3D 120 phase shift laser scanner set to a resolution of 1/5, quality of 4x and speed of 122,000 points per second. Two types of scanning reference objects were used, 139 millimeters white spheres and 150 by 150 millimeters black and white checkerboards. During
Industrial study A, fastener plates were mounted throughout the factory building to positioning the reference spheres. Three of these plates were re-used in this study to align the data with that of the previous study. Tripods and other fastening equipment were used as well to mount added reference objects. To acquire sufficient data points, the scanner was placed in 13 different positions. The average time between the start of each scan was 12 minutes including approximately 6-7 minutes for the actual scanning in each position. Total data capture time including planning and preparations was 4 hours. The scan data was processed in the vendor specific application, which semi-automatically identifies the reference objects and aligns the data from all 13 scans into one point cloud. The resulting point cloud consisted of approximately 325 million points, each point consists of x, y, z coordinates and RGB color codes. A rough estimation of the duration of the data processing is 4 hours, equal to the data capture duration as presented in Table 1. The data of this stage can be used to visualize the current state of the production system, as point cloud or as spherical pictures from each scan as described in section 3.1.

Table 1: Summary of the scan process

<table>
<thead>
<tr>
<th>Factory area</th>
<th>Number of scans</th>
<th>Time for data capturing</th>
<th>Time for data processing</th>
<th>Number of persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500 m²</td>
<td>13 scans</td>
<td>4 hours</td>
<td>Approx. 4 hours</td>
<td>4 persons</td>
</tr>
</tbody>
</table>

2) Modeling the realistic visualization

The redesigned state of the production system is presented in a point cloud based realistic visualization created in two steps. First, the point cloud was modified according to the existing layout proposal. The current robotic cell was duplicated and positioned at the proposed location, as presented in Fig. 4. The proposed location currently held office space, so an adjacent work area, with similar configuration was superimposed and used to represent the proposed location. The adjacent section was taken from the point cloud captured in Industrial study A.

Second, the point cloud of the layout proposal was used to create a simulation model of the redesigned state. The simulation model included products, operators, work tasks, material handling equipment, and process related parameters. The simulation application required 3D CAD models for representing moving objects such as material wagons, fixtures, and products. These models where created manually in 3D CAD format according to measurements from the point cloud. Predefined models of humans were used to represent the machine operators. The point cloud was used as to represent the building and static objects in and around the two robotic cells. The result is a realistic visualization created as a simulation model with point clouds and 3D CAD models, as presented in Fig. 5.
B. Evaluating the use of realistic visualizations

The use of realistic visualizations was evaluated using two use scenarios representing possible alternatives for using the visualizations to solve industrial problems. These scenarios used the realistic visualization described above in different contexts. The first scenario handled layout and workflow planning of new equipment in different phases of the planning process. In the earliest phase, a point cloud of the factory building was used in combination with simplified CAD models to approximately evaluate the location of the robotic cell. The complexity of the CAD model was subsequently increased to mimic the planning process ending in a simulated model of the production system. The second scenario was using the realistic visualization to evaluate how new equipment could be installed in an existing production system. This was demonstrated according to the process described in section 4.1.2. The two scenarios were discussed in four semi-structured group interviews. The interviewees were working either directly with the studied production system or in the project team responsible for planning and installing the system. At the interview sessions, the interviewers presented the two scenarios to the interviewees. During the ongoing presentation, possible benefits and drawbacks were discussed. This enabled collection of immediate reflections based on the use scenarios. The reflections have been sorted as problems with the current tool along with benefits and drawbacks using realistic visualizations. These reflections are summarized in the following sections. For the complete evaluation, see [11].

1) Problems identified with current layout planning tool
The current used tool for layout planning at the company was described as using 2D CAD models for evaluating and visualizing different layout proposals. In these models, objects such as power cables, pillars, and machinery equipment are not always at right position or even included at all. This causes potential problems during the implementation phase of the system build or change. Another problem described with these 2D CAD models is for everyone included in the planning process to understand them correctly. This results in difficulties to communicate and discuss layout proposals with other persons within the organization or with machine suppliers. The solution to this problem was usually manual measurements in the real production system to provide machine suppliers with necessary information. It was seen as a too time-consuming process to update CAD models with correct and accurate information.

2) Perceived benefits from using 3D laser scan supported layout planning
The interviewees found that realistic visualizations would enable accurate layout planning when redesigning production systems. Realistic visualizations would make it possible to compare layout proposals against each other by thoroughly investigate each proposal before taking any decisions. The realistic visualization makes it faster to evaluate if equipment will fit in a specified area of the factory compared to using the current tools. Making this process faster will lower the risk of working to long with a layout proposal that cannot be realized. The realistic visualizations will also provide decision-makers with easy-to-understand presentations, enabling decisions based on correct information. It will also support different functions in project teams to align their understanding of how a layout proposal actually works, looks, and interacts with other parts of the factory. This will make it easier to
involve and educate operators and production technicians in the early phase of the planning. Besides these persons, it will be less time-consuming to include e.g. workers’ union representatives and safety protection agents in discussions regarding work place design in the same phase of the planning process.

3) Perceived drawbacks from using 3D scan supported layout planning
The interviewees stated that working with realistic visualizations might increase the risk of spending too much time on creating the visualization, which can create a risk of losing the potential time gain of the visualization. For example it might be time-consuming to simulate the workflow for each project and not always necessary. The implementation of using realistic visualization was also deemed critical by the interviewees, due to the risk of it not being used. To get a good interest and acceptance in the organization, it is important to explain the benefits and make sure that the right people get to work with it. The interviewees foresee that it could be difficult to determine who should be the owner of the data and who should be authorized to edit the different models. It was also perceived that the 3D scan data has a slightly limited area of application compared with CAD models. This perception is related to the fact that the selection of software suites that handle point cloud data is still rather limited.

V. THE PROBLEM SOLVING APPROACH
The result from Industrial study C indicates that realistic visualizations created from 3D laser scan data have the potential to support the planning when redesigning production systems, which verifies the lessons learned from Industrial study A and B. These studies showed that realistic visualizations would make it possible to increase the common understanding of the redesigned state of production systems in project teams. This common understating is critical when identifying and solving possible planning problems of the redesigned state of production systems. In the industrial studies, the problem identification and solving were made using the realistic visualizations without any well-defined approach. To make the process more effective the LAMDA problem solving approach can be applied. By using this approach, it is possible to solve problems by evaluating the realistic visualizations in project teams and improve visualization of the redesigned state. The five steps of the approach are applied within the context of the industrial studies by reflecting on lessons learned in these studies, as presented in Table 2.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description of use in industrial settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Look</td>
<td>The realistic visualization enables everyone in the project team to get a common understanding of the redesigned production system.</td>
</tr>
<tr>
<td>Ask</td>
<td>Using the realistic visualization will make it possible to make a qualified assessment of the situation, ask relevant questions, and identify problems or risks.</td>
</tr>
<tr>
<td>Model</td>
<td>Changes are made to the model based on identified problems or risks. These changes could be moving machines or other equipment by modifying the point cloud or adding CAD models.</td>
</tr>
<tr>
<td>Discuss</td>
<td>The updated model is used as basis for discussion to define and analyze the solutions and arrive at alternatives to improve.</td>
</tr>
<tr>
<td>Act</td>
<td>The defined solution is implemented in the final model, which is visualized in the project team to verify the effectiveness. The process is then repeated until no future problems or risks are identified.</td>
</tr>
</tbody>
</table>

VI. DISCUSSION
The industrial studies have uncovered an interest to use realistic visualizations to plan the redesign of production systems. In these studies, realistic visualizations where used for evaluating the required space for machines and material handling processes. The evaluation process of Industrial study C indicated that to implement realistic visualizations in the daily work, an approach of how to work with the visualizations is required. The LAMDA problem solving approach could be one such way of working with realistic visualizations. Other approaches may also be adapted to the visualizations and has the possibility to be useful for different applications. As described in the evaluation process, the acceptance of the application by the personnel is critical. It is important that everyone involved is aware of the benefits and possibilities, otherwise it may not be used to the right extent. To increase the acceptance, the realistic visualizations should be adapted to project teams making it possible to include decision-makers in the process. This may be an important step for reaching overall acceptance and garner support for upcoming changes to the production system.
The use of 3D laser scanning technology is relatively new and undeveloped within the area of production systems. Creating realistic visualizations of the factory environment with such technology has shown to be a time effective process. For example, in Industrial study C where less than a working day was spent in the factory capturing the scan data and about the same amount of time was used to process the data. In this phase, the data is a very accurate and realistic visualization of the current state. This could be compared to making manual measurements to create 3D CAD models of the same factory environment, which would have required decidedly larger amounts of time. The accuracy and level of detail in 3D CAD models created in such manner could also be questioned.

The realistic visualization presented here can provide decision-support also in other redesign activities besides layout planning. It could be used in the daily work tasks on changing and maintaining production systems. Having a realistic and accurate virtual representation of the existing system could be an important support in the daily work and save valuable time. One example is production engineering meetings, where the participants are not agreeing about the actual situation in the factory. With this support, it is possible to study the current system using the visualization without leaving the room. The main goal should be to support the planning process with up-to-date information, to reduce the number of problems and misunderstandings and reduce the overall planning time and cost.

A. Reflection upon the research questions

This section returns to the research questions posed in the introduction of this paper and attempts to address them in the light of the work that has been presented.

How can realistic visualizations support project teams when planning production systems?

• Realistic visualizations can be used early on in decision-making process to gather input from future users of the systems.
• It is possible to use realistic visualizations to answer questions raised regarding both the current and the redesigned production systems.
• Realistic visualizations are more inclusive in terms of who can understand them, thus enabling a wider cross-organizational expertise in the decision-making process.
• Using realistic visualizations enables quick evaluation of alternative solutions.

How can a feasible problem solving approach be adopted to support decision-making using realistic visualizations in project teams?

• Employing the LAMDA approach as described in section 5 seems to be a promising approach to be used for systematic problem solving when redesigning production systems.
• The problem solving approach could continuously be used during different phases of the redesign process to ensure that all problems are eliminated and that the right decisions are made.

VII. CONCLUSIONS

The three industrial studies have shown that 3D laser scanning is effective for capturing spatial data of production systems. The resulting data can be used for generating point clouds with sub-centimeter accuracy, which can be modified to create realistic visualizations of redesigned of production systems. By supporting project teams with such realistic visualizations will enable an increased common understanding about redesigned production systems. With a common understanding, it is possible to use the realistic visualizations as support for problem solving and decision-making. This support requires a structured approach, such as the LAMDA problem solving approach applied in this paper. Applying such an approach, while redesigning production systems, has the potential to improve the teamwork quality by working pro-actively with identifying possible risks and problems. This will provide better decision-support, resulting in production systems with higher performance.

ACKNOWLEDGMENT

This work is funded by VINNOVA (Swedish Agency for Innovation Systems), and the NFFP5 program. This work has been carried out within the Sustainable Production Initiative and the Production Area of Advance at Chalmers University of Technology. The support is gratefully acknowledged.
REFERENCES

AUTHOR BIOGRAPHY

Erik Lindskog is a PhD student in the field of virtual production systems at the Department of Product and Production Development, Chalmers University of Technology, Sweden. In 2011, he obtained his M.Sc. degree in Automation and Mechatronics with a focus on Production Engineering. Erik is researching mainly on how to visualize and convey information for sustainability considerations while designing and operating production systems.

Jonatan Berglund is a PhD student in Production Engineering working in the field of virtual production systems at the Department of Product and Production Development, Chalmers University of Technology, Sweden. He recently held a position as a guest researcher at the National Institute of Standards and Technology in Gaithersburg, MD, USA, working in the area of sustainable manufacturing. His research focus is currently on utilizing 3D scan data to facilitate work methodologies for solving various production related engineering problems.

Johan Vallhagen is Coordinator for Production Research and Production System development at GKN Aerospace Engine Systems. He is formerly M.Sc. in Production Engineering from Chalmers University of Technology and in 1996 he received a PhD in Manufacturing Automation. During his industrial career the main assignments has been in areas of Production System (Lean Production) implementation, Design For Manufacturing, Quality and productivity development.

Björn Johansson is Associate Professor and Vice Head of Production Systems division at the Department of Product and Production Development, Chalmers University of Technology, Sweden. He serves as Production Modeling Corporation director for the European office in Gothenburg. His research interest is in the area of Discrete Event Simulation applied for manufacturing industries, including environmental effects modeling, modular modeling methodologies, software development, user interfaces, and input data architectures.