

ISSN: 2319-5967

 ISO 9001:2008 Certified
 International Journal of Engineering Science and Innovative Technology (IJESIT)

 Volume 2, Issue 3, May 2013

213

 Abstract— The Java programming language provides a lot of security features, build directly into the language and also

supplied by security relevant APIs and implementations. Nevertheless, simply by choosing Java as the programming

language for some program, will not guarantee that the program will be safe against secrecy attacks, integrity or

availability attacks. Security concerns should be considered throughout the whole software development process,

independent of the particular programming language chosen. This paper discusses all the above mentioned aspects of

"Java Security", but focuses on "secure programming techniques” & “vulnerabilities” that should be considered when

programming in Java various classifications of vulnerability and corresponding attacks are mentioned with mitigation

techniques The paper discusses the input data causing attack and how to prevent it. [1]

 Index Terms— Attack, JavaScript, Security, Vulnerability.

I. INTRODUCTION

The landscape of security vulnerabilities has changed dramatically in the last several years. While buffer overruns

and format string violations accounted for a large fraction of all exploited vulnerabilities in the 1990s, the picture

started to change in the first decade of the new millennium. As Web-based applications became more prominent,

familiar buffer overruns are now far outnumbered by Web application vulnerabilities such as SQL injections and

cross-site scripting attacks. These vulnerabilities have been responsible for a multitude of attacks against large

e-commerce sites, financial institutions and other sites, leading to millions of dollars in damages.
 [1]

II. BACKGROUND

In the last twenty years, web applications have grown from simple, static pages to complex, full-fledged dynamic

applications. Typically, these applications are built using heterogeneous technologies and consist of code that runs

on the client (e.g., JavaScript) and code that runs on the server (e.g., Java servlets). Even simple web applications

today may accept and process hundreds of different HTTP parameters to be able to provide users with rich,

interactive services. As a result, dynamic web applications may contain a wide range of input validation

vulnerabilities such as cross site scripting, SQL injection etc. Unfortunately, because of their high popularity and

a user base that consists of millions of Internet users, web applications have become prime targets for attackers.
[2]

Fig 1 Web Application set-up[3]

III. SECURITY IN THE SOFTWARE DEVELOPMENT LIFE CYCLE

Although the software development life cycle can be divided in different ways, it usually includes the following

phases, which application developers can repeat iteratively: initialization, specification and design,

implementation (coding), testing, deployment, and decommissioning. Although developers should address code

security concerns during the entire software product development life cycle, they should specifically focus on

three key phases:

. • Implementation.

Java Program Vulnerabilities
Sheetal Thakare, Dr.B.B.Meshram

ISSN: 2319-5967

 ISO 9001:2008 Certified
 International Journal of Engineering Science and Innovative Technology (IJESIT)

 Volume 2, Issue 3, May 2013

214

• Testing.

• Deployment.

A. Implementation

During coding, developers must use best practices that avoid the most critical vulnerabilities in the specific

application domain. Example practices include input and output validation, the identification of malicious

characters, and the use of parameterized commands. Although these techniques are usually effective in avoiding

most Web security vulnerabilities, developers do not always apply them or they apply them incorrectly because

they lack security-related knowledge.

B. Testing

Many techniques are available for identifying security vulnerabilities during testing, including penetration testing

(by far the most popular technique), static analysis, dynamic analysis, and runtime anomaly detection. The

problem is that developers often focus on testing functional requirements and disregard security aspects.

Furthermore, existing automated tools usually provide poor results—either low vulnerability detection coverage

or too many false positives.

C. Deployment

At runtime, it is possible to include different attack detection mechanisms in the environment. These mechanisms

can operate at different levels and use various detection approaches. Obstacles to their use relate to performance

overhead and to the false positives that disrupt normal system behaviour.
 [4]

IV. SECURE PROGRAMMING GUIDELINES

Secure programming is not possible without obeying some general good programming practices. Therefore

guidelines are divided into two parts. The first part contains general rules that should be followed to write secure

programs, while the second part concentrates on Java specific topics. The guidelines given in the first part are of a

somewhat general nature and similar rules can be formulated for other programming languages as well
. [5][6]

 Security Guidelines
 [5] [6]

1. Validate Input and Output

2. Fail Securely (Closed)

3. Keep it Simple

4. Use and Reuse Trusted Components

5. Defense in Depth

6. Only as Secure as the Weakest Link

7. Security By Obscurity Won't Work

8. Least Privilege

9. Compartmentalization (Separation of Privileges)

Java Specific Guidelines
 [5][6]

1. Garbage Collection

2. Exception Handling

3. Serialization and Deserialization

4. Java Native Interface (JNI)

V. VULNERABILITIES

An attacker, the "Threat" can exploit Vulnerability, which is a security bug in an application. Collectively this is a

Risk
.[5]

In the following we define and describe common categories of Web Vulnerabilities
.[7]

Code Injection (COD)

Cookie Security (COO)

Cross Site Scripting (XSS)

Flow Injection (FLO)

Information Disclosure (INF)

Input Validation (INP)

Path Traversal (PAT)

Resource Injection (RES)

SQL Code Injection (SQL)

Unreleased Resources (UNR)

Logic Errors (LOG)

ISSN: 2319-5967

 ISO 9001:2008 Certified
 International Journal of Engineering Science and Innovative Technology (IJESIT)

 Volume 2, Issue 3, May 2013

215

Table 1 Web Application Vulnerability Category [7]

Category

Vulnerabilit

y

Description
Related to

(attacks)

Code

Injection

(COD)

 The injection of system and script commands into a web application or an

application’s server.

 This kind of attack mostly applies to server side script languages like PHP or

Perl.

INP

PAT

RES

Cookie

Security

(COO)

 This category includes several security vulnerabilities based on cookies, e.g.,

unfiltered cookie content, cookie poisoning, and flow injection via cookies.

 In a broader sense, this section is related to session management.

INP

Cross Site

Scripting

(XSS)

 Here, the attacker inserts code into a URL or link.

 The malicious URL must be executed by a web application's user to have an

effect.

 Misleading users to execute such URLs is supported by the URL itself which

looks like a trustworthy URL to the application.

 This only works when the application is vulnerable to XSS.

 The result can be, e.g., the execution of malicious script (e.g., JavaScript)

commands on the client side.

INP

Directory

Browsing
Path Traversal

Directory

Traversal
Path Traversal

Flow

Injection

(FLO)

 It is a special case of logic errors and is usually not detectable by security

scanners.

 This vulnerability is based on setting application states which depend on

untrustworthy user data.

 Thus, the control flow of an application’s code could be influenced by an

attacker.

LOG

Information

Disclosure

(INF)

 An information disclosure security flaw can be defined as the emission of data or

information which is not intended to become available to the public.

 This can be internal or private data.

 There are several issues in this category which are not only programming errors,

like the wrong or public storage of sensitive data.

Information

Disclosure (INF)

Input

Validation

(INP)

 Usually any input/external data – not only from users – of an application has to be

checked to see whether it conforms to intended formats or properties.

 Such procedures usually also involve data filtering (sanitization) and adequate

output encoding.

 If input validation, filtering, and output encoding are missing or incomplete, this

can enable a variety of attacks.

COD

COO

RES

SQL

XSS

Logic Errors

(LOG)
 All programming errors, but also errors in system design or specification, which

cannot be classified in another security category are called logic errors.

 Thus, these errors are not typical programming errors.

 Moreover, it is usually not possible to test for resulting security flaws.

FLO

Path

Browsing

see Path Traversal

Path

Traversal

(PAT)

 Can be generally defined as unintended access to application files or directories

by injecting (sub) paths and filenames.

 The injection, for instance, can take place into application URLs.

COD

INP

RES

Category

Vulnerabilit

y

Definition for the area of IT security
Related to

(attacks)

Resource

Injection

(RES)

 Resource injection flaws can be defined as a category of security vulnerability

related to unintentional access to system resources via the application layer, like in

the case of path traversal.

COD

INP

PAT

SQL Code

Injection

(SQL)

 Results of successful attacks of this category are the execution of arbitrary SQL

statements and commands on the application’s database backend(s). INP

ISSN: 2319-5967

 ISO 9001:2008 Certified
 International Journal of Engineering Science and Innovative Technology (IJESIT)

 Volume 2, Issue 3, May 2013

216

Unreleased

Resources

(UNR)

 Some program resources, which are, e.g., variables and class instances (objects),

have to be explicitly unloaded for freeing application memory.

 If they are not released properly and not caught by the Java garbage collector,

they might lead to increased memory consumption.

 Thus, in a broader sense, unreleased resources can enable ―Denial of Service‖

attacks and are a concern for an application’s security.

Unreleased Resources

(UNR)

Fig 2 Web Application set-up with Firewall [3]

VI. DETECTING VULNERABILITIES

Identifying security issues requires not only focusing on testing the application’s functionalities but also on find-

ing dangerous hidden flaws in the code that attackers can exploit. The two main approaches for detecting

vulnerabilities are white-box analysis and black-box testing.
[4]

A. White-box analysis

White-box analysis consists of examining the code without executing it. Developers can do this in one of two

ways: manually, during code inspections and reviews; or automatically, using automated analysis tools. Code

inspection is the process in which a programmer’s peers systematically examine the delivered code, searching for

programming mistakes. Security inspections are the most effective way to minimize vulnerabilities in an

application; it is a crucial procedure when developing software for critical systems. Nevertheless, such inspections

usually take a long time, are expensive, and require deep knowledge of Web security. A less expensive alternative

is code review, a simplified version of inspections that is useful for analyzing less critical code. Reviews are also

done manually, but they do not include a formal inspection meeting. Several experts perform the review

individually, and a moderator filters and merges the outcomes. Although also an effective approach, code review

is still quite expensive. To reduce the cost of white-box analysis, developers sometimes rely on automated tools,

such as static code analyzers. Static code analysis tools vet software code, either in source or binary form, in an

attempt to identify common implementation-level bugs. The analysis performed using existing tools varies

depending on their sophistication, ranging from those that consider only individual statements and declarations to

others that consider dependencies between lines of code. Among their other uses, such as for model checking and

data flow analysis, these tools automatically highlight possible coding errors. The main problem is that exhaustive

analysis is difficult and cannot find many security flaws because of the source code’s complexity and the lack of a

dynamic (runtime) view.

B. Black-box testing

Black-box testing refers to the analysis of program execution from an external point of view. In short, it consists of

comparing the software execution outcome with the expected result. Testing is probably the most used technique

for software verification and validation. There are several levels for applying black-box testing, ranging from unit

to integration to system testing. The testing approach also can be formal (based on models and well-defined test

specifications) or less formal (referred to as ―smoke testing,‖ a type of rough testing intended to quickly reveal

simple bugs).The goal of robustness testing, a specific form of black-box testing, is to characterize the system’s

behavior in the presence of erroneous input conditions. Penetration testing is a special type of robustness testing

that analyzes program execution in the presence of malicious inputs, searching for potential vulnerabilities. In this

ISSN: 2319-5967

 ISO 9001:2008 Certified
 International Journal of Engineering Science and Innovative Technology (IJESIT)

 Volume 2, Issue 3, May 2013

217

approach, testers apply fuzzing techniques, which consist of submitting unexpected or invalid items of data, to a

Web application and review its responses, using HTTP requests. Testers do not need to know the implementation

details—they test the application inputs from the user’s point of view. The number of tests can reach hundreds or

even thousands for each vulnerability type.

C. Limitations of vulnerability detection

Penetration testing and static code analysis can be manual or automatic. Because manual tests or inspections

require specialized security resources and are time-consuming, automated tools are the typical choice of Web

application developers. An important fact when considering the limitations of vulnerability detection tools is that

testing for security is difficult. Indeed, measuring an application’s security is challenging: although finding some

vulnerabilities can be easy, guaranteeing that the application has no vulnerabilities is difficult. Both penetration

testing and static code analysis tools have intrinsic limitations. Penetration testing relies on effective code

execution; however, in practice, vulnerability identification only examines the Web application’s output. Thus,

the lack of visibility into the application’s internal behavior limits penetration testing’s effectiveness. On the other

hand, exhaustive source code analysis can be difficult. Code complexity and the lack of a dynamic (runtime) view

might prevent finding many security flaws. Of course, penetration testing does not require access to the source

code, while static code analysis does. Using the wrong detection tool can lead to the deployment of applications

with undetected vulnerabilities.

VII. DETECTING ATTACKS

Attack detection consists of identifying deviations from learned behavior. Attack detection tools use approaches

based on either anomaly detection or signatures.

Fig 3 Attack Detection Approach [4]

 We need the following fields for an effective investigation:

– Source IP

– Timestamp

– HTTP Method

– URI requested

– Full HTTP data sent

 Attack data could be in:

– URI(uniform resource identifier)

– HTTP headers from client

– Cookie

- Basically anywhere

Detection Techniques

 Using static techniques

– Happens post-occurrence of event

– Parse log files using standard tools/techniques

– Aim is forensics investigation

 Using dynamic techniques

– Detect the attack as it happens

– Trigger alarms when attack is happening

Aim is detect/prevent in real-time

Static detection techniques

Data sources to look at:

ISSN: 2319-5967

 ISO 9001:2008 Certified
 International Journal of Engineering Science and Innovative Technology (IJESIT)

 Volume 2, Issue 3, May 2013

218

– Web Server Logs

– Application Server Logs

– Web Application’s custom audit trail

– Operating system logs

What’s missing?

– POST data (only GET data available)

– HTTP Headers only partially represented

Cookie or Referrer data depends on web server

Static Detection Fails to detect:

 HTTP Header attacks can’t be detected:

– The Template of attack can’t be detected

– Attacks that overflow various HTTP header fields

 Web application attacks in a POST form

– SQL injection

– Cross-site scripting

Forceful browsing – user tries to access page without going through prior pages that would ensure proper

authentication and authorization.

Static Detection does detect:

 Automated attacks using tools such as Nikto or Whisker or Nessus

 Attacks that check for server misconfiguration (../../winnt/system32/cmd.exe)

 HTML hidden field attacks (only if GET data –rare)

 Authentication brute-forcing attacks

Order ID brute-forcing attacks (possibly) – but if it is POST data, then order IDs cannot be seen

Dynamic detection techniques

Methods:

– Application Firewall

– In-line Application IDS

– Network-based IDS (possibly) adapted for applications

Advantages:

– Complete packet headers and payload available

– Including HTTP headers

– POST request data

URI request data

The web application intrusion detection space is divided into two possibilities:

– Signature-based

– Anomaly-based

Each has its own implementation and effectiveness issues.
Table 2 Signature Based Approach Vs Anomaly Based [10]

Signature-based Anomaly-based

Easier to implement More complicated

Cheaper to modify, without expert help Mostly commercial solutions

False positives False positives are fewer

As well as false negatives False negatives as well

Popular for detecting known web server

attacks. Can be tweaked to do decent

web application detection.

Used for both web server, as well as web

application attacks

ISSN: 2319-5967

 ISO 9001:2008 Certified
 International Journal of Engineering Science and Innovative Technology (IJESIT)

 Volume 2, Issue 3, May 2013

219

VIII. TYPE OF ATTACKS

1. Inject malicious data into java applications.

1.1 Parameter Tampering

1.2 URL Manipulation

1.3 Hidden Field Manipulation

1.4 Http Header Tampering

1.5 Cookie Poisoning
[8]

1.1 Parameter tampering:

- pass specially crafted malicious values in the fields of HTML forms.

1.2 URL manipulation:
- use specially crafted parameters to be submitted to the Web application as part of the URL.

1.3 Hidden field manipulation:
- set hidden fields of HTML forms in Web pages to malicious values.

1.4 HTTP header tampering:
- manipulate parts of HTTP requests sent to the application.

1.5 Cookie poisoning:
- Place malicious data in cookies, small files sent to Web-based applications.

2. Manipulate applications using malicious data.

2.1 SQL Injection

2.2 Cross-Site Scripting

2.3 Http Response Splitting

2.4 Path Traversal

2.5 Command Injection
[8]

2.1 SQL injection:
- pass input containing SQL commands to a database server for execution.

2.2 Cross-site scripting:
- exploit applications that output unchecked input, this tricks the user to execute malicious scripts.

2.3 HTTP response splitting:
- exploit applications that output input verbatim to perform Web page defacements or Web cache poisoning

attacks.

2.4 Path traversal:
- exploit unchecked user input to control which files are accessed on the server.

2.5 Command injection:
-exploit user input to execute shell commands.

IX. CONCLUSION

JavaScript are being exploited to wreak havoc on the user’s browser and operating system without even violating

the security policies of the browser. Simple code can be written that eats up memory or other resources and

quickly crash the browser and even the operating system itself. Further deceptive programming practices can be

employed to annoy or trick the user into actions they might not intend. So the Web applications accepting user

input need to be careful to properly validate such data before accepting it, and to sanitize it before writing it into a

Web page. Failing to do so can result in cross-site scripting vulnerabilities, which are as harmful as violations of

the same origin policy would be. It is the responsibility of individual developers to write clean, careful code that

improves the user experience and always be on the lookout for malicious users trying to bypass their checks. Also

the Software should be compounded with counter measures for above listed attacks. This can allow for expanded

features. It can also reduce post attack coding efforts.

REFERENCES

[1] Whitepaper Secure Programming in Java (c) 2005, EUROSEC GmbH Chiffriertechnik & Sicherheit.

[2] S. Institute. Top Cyber Security Risks, September 2009. http://www.sans.org/ top-cyber-security-risks/summary.php

[3] www.net-square.com,saumil@net-square.com, top ten web attacks.

[4] Defending against Web Application Vulnerabilities, Nuno Antunes and Marco Vieira, University of Coimbra, Portugal,

Published by the IEEE Computer Society, 0018-9162/12/$31.00 © 2012 IEEE,

[5] www.cgisecurity.com.

ISSN: 2319-5967

 ISO 9001:2008 Certified
 International Journal of Engineering Science and Innovative Technology (IJESIT)

 Volume 2, Issue 3, May 2013

220

[6] Security Code Guidelines, Sun Microsystems, Inc. (http://java.sun.com/security/seccodeguide.html).

[7] Secologic, Java Web Application Security, Best Practice Guide, Document Version 2.0.

[8] Finding Security Vulnerabilities in Java Applications with Static Analysis, V. Benjamin Livshits and Monica S. Lam

Computer Science Department Stanford University {livshits, lam}@cs.stanford.edu.

[9] A Process for Performing Security Code Reviews, published by the IEEE computer society ■ 1540-7993/06/$20.00 ©

2006 IEEE ■ IEEE security & privacy.

