Abstract—The graph G is Hamiltonian laceable [2] if there exists a Hamiltonian path between every pair of distinct vertices in it at an odd distance. G is Hamiltonian-t-laceable (t^{*}-laceable) if there exists a Hamiltonian path in G between every pair (at least one pair) of vertices u and v in G with the property $d(u,v) = t$. In this paper, we discuss the Hamiltonian laceability properties of the graph $G * v$, where G is the Star graph $G = K_{1,n}$, $(n \geq 3)$. We also explore the Hamiltonian Laceability properties of the subdivision graph G^{+}.

Index Terms—Hamiltonian path, Hamiltonian laceability, Hamiltonian-t-laceable path, i-Hamiltonian laceability.

I. INTRODUCTION

Let G be a finite, simple connected undirected graph. Let u and v be two vertices in G. The order of G denoted by $O(G)$ is the cardinality of the vertices of G. The distance between u and v denoted by $d(u,v)$ is the length of a shortest u-v path in G. G is Hamiltonian Laceable if there exists a Hamiltonian path between every pair of distinct vertices in it at an odd distance. G is Hamiltonian-t-laceable if there exists a Hamiltonian path between every pair of vertices u and v in G with the property $d(u,v) = t$ and Hamiltonian-t*-laceable [2] if there exists a Hamiltonian path between at least one such pair with the property $d(u,v) = t$, where t is a positive integer such that $1 \leq t \leq diam(G)$. Hamiltonian laceability in the brick product of cycles was explored by B. Alspach, C.C. Chen and Kevin McAveney in [1] where the authors proved the laceability in the brick product of odd cycles. Hamiltonian-–t-laceability in the brick product of even cycles was studied by Leena. N. Shenoy and R. Murali in [2]. In [3], Girisha. A and R. Murali have studied Hamiltonian-t*-laceability of 4-regular graphs. In this paper we study the Hamiltonian-t*-laceability properties of the graph extended star graph $G * v$ and the subdivision graph G^{+}.

Definition 1.1: Let $G = K_{1,n}$ be the star graph and $v \in V(K_{1,n})$. The graph $G * v$ is obtained from G by replacing the vertex v by a cycle of length n and joining the vertices of the cycle to the former neighbors of v as shown in Fig.1.

Fig. 1: The Graphs G and $G * v$
Definition 1.2: Let G be a complete graph. The subdivision graph obtained by inserting a vertex of degree two into any one edge of G and we denote it by G^+.

When the inserted vertex in a subdivision of G is specified, say u, we denote by $G(u)$ a graph with $V(G(u)) = V(G) \cup \{u\}$ and $E(G(u)) = (E(G) - xy) \cup \{ xu, xy \}$ where $xy \in E(G)$.

Definition 1.3: Let G be a connected graph of order n and let $h_p(G)$ be the length of a Hamiltonian path [4] between any two distinct vertices in G. A Hamiltonian path in G is called a 0-Hamiltonian path if $h_p(G) = n - 1$ and a 1-Hamiltonian path if $h_p(G) = n$.

Definition 1.4: Let i be a non-negative integer. A connected graph G of order n is called i-Hamiltonian-t-laceable if there exists in G, a i-Hamiltonian path between every pair of distinct vertices u and v with the property $d(u, v) = t$, $1 \leq t \leq \text{diam} G$.

Definition 1.5: A connected graph G of order n is called i-Hamiltonian-t^*-laceable if there exists in G, an i-Hamiltonian path [4] between at least one pair of distinct vertices u and v with the property $d(u, v) = t$, $1 \leq t \leq \text{diam} G$.

Definition 1.6: Let $G = K_{1,n}$, $n \geq 3$, be the star graph of order n. Then the extended star graph $K_{1,n,n}$ is obtained by inserting a star graph of order $n - 1$ to each pendant vertex of $K_{1,n}$.

II. RESULTS

Theorem 2.1: The graph $G = K_{1,n} \ast v$, $n \geq 3$ is i-Hamiltonian-1^*-laceable for $i = n$.

Proof: Let us denote the vertices of $K_{1,n} \ast v$ by $a_1,a_2,a_3,a_4,a_5,\ldots,a_n$ and $b_1,b_2,b_3,b_4,b_5,\ldots,b_n$. Here we need to establish the following case to show that G is i-Hamiltonian-1^*-laceable.
In G, $d(b_1, a_i) = 1$ and the path

$$P : (b_1, a_2) \cup (a_2, b_2) \cup (b_2, a_3) \cup (a_3, b_3) \cup (b_3, a_4) \cup (a_4, b_4) \cup (b_4, a_5) \cup (a_5, b_5) \cup (b_5, a_6) \cup (a_6, b_6) \cup \cdots \cup (a_{n-1}, b_{n-1}) \cup (b_{n-1}, a_n) \cup (a_n, b_n) \cup (b_n, a_1)$$

is a Hamiltonian path from b_1 to a_1 in G.

Hence the proof.

Theorem 2.2: The $G = k_{1,n} * v$, $n \geq 3$ is i-Hamiltonian-2'-laceable for $i = n - 1$.

Proof: Let us denote the vertices of $K_{1,n} * v$ by $a_1, a_2, a_3, a_4, a_5, \ldots, a_n$ and $b_1, b_2, b_3, b_4, b_5, \ldots, b_n$. Here we need to establish the following case to show that G is i-Hamiltonian-2'-laceable. In G, $d(b_1, a_2) = 2$ and the path

$$P : (a_2, b_2) \cup (b_2, a_3) \cup (a_3, b_3) \cup (b_3, a_4) \cup (a_4, b_4) \cup (b_4, a_5) \cup (a_5, b_5) \cup (b_5, a_6) \cup (a_6, b_6) \cup \cdots \cup (a_{n-1}, b_{n-1}) \cup (b_{n-1}, a_n) \cup (a_n, b_n) \cup (b_n, a_1)$$

is a Hamiltonian path from b_1 to a_2 in G.

Hence the proof.

Theorem 2.3: Let G be the complete graph of order n ($n \geq 3$). Then G^+ is 1-Hamiltonian-2'-laceable.

Proof: Let $G = k_n$ ($n \geq 3$) be the complete graph and G^+ be the subdivision graph obtained by inserting a vertex u of degree two into any edge of G with the end vertices x and y such that $d(x, y) = 2$. G^+ has $n + 1$ vertices and $^cC_2 + 1$ edges.

Let $u, x, a_1, a_2, a_3, a_4, a_5, \ldots, a_{n-2}, y$ be the vertices of G^+.

Then the path

$$P : (x, a_1) \cup (a_1, a_2) \cup (a_2, a_3) \cup (a_3, a_4) \cup (a_4, a_5) \cup (a_5, a_6) \cup \cdots \cup (a_{n-3}, a_{n-2}) \cup (a_{n-2}, u) \cup (u, y)$$

is a Hamiltonian - 2 *-laceable path from x to y.

Hence the proof.

Theorem 2.4: The graph $k_{1,n}$ is i-Hamiltonian-1'-laceable for $i = O(k_{1,n}) - 3$.

Proof: Let $G = k_{1,n}$ be a star graph of order n and $G_1 = k_{1,n}$ be an extended star graph with vertices $b_1, b_2, b_3, b_4, b_5, \ldots, b_{n-3}, b_{n-2} - b_n, b_{n-1}$ and $a_1, a_2, a_3, a_4, a_5, \ldots, a_n$ and a parent vertex v.

![Fig. 3: The graph $k_{1,n}$ and $k_{1,n}$](image-url)
In G_1, $d(a_1, v) = 1$ and the path

$$P: (a_1, b_1) \cup (b_1, b_2) \cup (b_2, b_3) \cup \ldots \ldots \cup (b_{n-1}, a_2) \cup (a_2, b_n) \cup (b_n, b_{n+1}) \cup (b_{n+1}, b_{n+2}) \cup (b_{n+2}, b_{n+3}) \cup (b_{n+3}, b_{n+4}) \cup \ldots \ldots \cup (b_{(3n-4)}, b_{(2n-3)}) \cup (b_{(2n-3)}, a_4) \cup (a_4, b_{(2n-2)}) \cup (b_{(2n-2)}, b_{(2n-1)}) \cup (b_{(2n-1)}, b_{2n}) \cup (b_{2n}, b_{2n+1}) \cup \ldots \ldots \cup \cup (b_{3n+2}, b_{3n+3}) \cup (b_{3n+3}, a_5) \cup (a_5, b_{3n+4}) \cup (b_{3n+4}, b_{3n+5}) \cup \ldots \ldots \cup (b_{4n+1}, b_{4n+2}) \cup \ldots \ldots \cup \cup (a_n, b_{(n-2)n+2}) \cup (b_{(n-2)n+2}, b_{(n-2)n+3}) \cup (b_{(n-2)n+3}, b_{(n-2)n+4}) \cup \ldots \ldots \cup (b_{(n-2)n+n}, v)$$

is a $i- \text{hamiltonian} - 1^* - \text{laceable path from} a_1 \text{ to } v$ with $i = O(k_{1,n,n}) - 3$.

Hence the proof

ACKNOWLEDGMENT

The first author is thankful to the management and the staff of the Department of Mathematics, Acharya Institute of Technology, and Bangalore for their support and encouragement. The authors are also thankful to the management and R&D centre, Department of Mathematics, Dr. Ambedkar Institute of Technology, Bangalore.

REFERENCES

AUTHOR BIOGRAPHY

Girisha. A is working as Assistant Professor in the Department of Mathematics, Acharya Institute of Technology, Bangalore, and Karnataka, India. He is about to complete his PhD degree from Visvesvaraya Technological University, Belgaum. He has published four research papers. He is a life member of Indian Mathematical society.

Dr. R. Murali is working as Professor in the Department of Mathematics, Dr. Ambedkar Institute of Technology, Bangalore, and Karnataka, India. He has published several research papers in reputed journals. He is a life member of ISTE, ADMA and the Ramanujan Mathematical Society.